Civil, Architectural, and Environmental Engineering
Alumni Memorial Hall
3201 S. Dearborn St. Suite 228
Chicago, IL 60616
312.567.3540
caee@iit.edu
engineering.iit.edu/caee
Chair
Paul Anderson
Faculty with Research Interests
For information regarding faculty visit the Department of Civil, Architectural, and Environmental Engineering website
.
The Department of Civil, Architectural, and Environmental Engineering offers three degree programs that prepare the Illinois Institute of Technology graduate to face a changing world and create solutions that benefit all of humanity.
Civil engineering is the oldest of all engineering professions. Its roots can be traced back to ancient history and followed through to modern times by its ubiquitous presence in the lives of every modern and emerging society across the globe. Civil engineers are needed to answer the basic challenges rooted in all of engineering.
Civil engineers work on large infrastructure projects; everything from highways, railroads, pipelines, water treatment systems, dams, reservoirs, seaports, airports, waterways, tunnels, cities, and even skyscrapers. Civil engineers do more than build; they are responsible for ensuring the safety of infrastructure.
Architectural engineers work on buildings. They design and integrate the structure, systems, enclosure, and environment to create a single design that answers and exceeds the needs of the client. Architectural engineering is multi-disciplinary by its nature. Studies include thermodynamics of building components, the science of air and water flow, the management of electrical energy, the design of light steel space frames, how to provide the proper illumination in an auditorium, how to manage the humidity in the air, and how to make a theater’s acoustics enhance any performance. Architectural engineers are trained to work with architects to incorporate engineering directly into design and ensure that a building performs as expected and actually protects its occupants from the threat of fire and smoke.
Environmental engineering is a specialization within civil engineering. The department offers a bachelor’s degree with specialization in environmental engineering and a master’s program in environmental engineering. Environment engineers are the designers of sustainable solutions to protect as well as use air, water, and earth across the globe. They fulfill a crucial aspect in the design of our infrastructure to ensure that resources are conserved and used for the benefit of humanity now and well into the future.
Engineering management is a degree that focuses on the development of professional skills and catapulting new ideas into new products and services in any field of engineering. The degree allows students to concentrate in any engineering area and augments engineering skills with improved knowledge of creativity, innovation, communication, intellectual property, and entrepreneurship. The degree is designed to give maximum freedom in course selection and can be tailored to provide the building blocks leading to start a master’s program in any engineering field.
The programs in the Department of Civil, Architectural, and Environmental Engineering lay a broad basis to begin the journey to professional licensure and assume the responsibility to “...hold paramount the safety, health and welfare of the public and shall strive to comply with the principles of sustainable development in the performance of their professional duties.” – American Society of Civil Engineers Code of Ethics.
Degree Programs
- Bachelor of Science in Architectural Engineering
- Bachelor of Science in Civil Engineering
- Bachelor of Science in Engineering Management
Co-Terminal Options
The Department of Civil, Architectural, and Environmental Engineering also offers the following co-terminal degrees, which enables a student to simultaneously complete both an undergraduate and graduate degree in as few as five years:
- Bachelor of Architecture/Master of Engineering in Construction Engineering and Management
- Bachelor of Science in Architectural Engineering/Master of Engineering in Architectural Engineering
- Bachelor of Science in Architectural Engineering/Master of Engineering in Construction Engineering and Management
- Bachelor of Science in Architectural Engineering/Master of Engineering in Structural Engineering
- Bachelor of Science in Chemical Engineering/Master of Engineering in Environmental Engineering
- Bachelor of Science in Civil Engineering/Master of Engineering in Construction Engineering and Management
- Bachelor of Science in Civil Engineering/Master of Engineering in Environmental Engineering
- Bachelor of Science in Civil Engineering/Master of Engineering in Geotechnical Engineering
- Bachelor of Science in Civil Engineering/Master of Engineering in Structural Engineering
- Bachelor of Science in Civil Engineering/Master of Engineering in Transportation Engineering
- Bachelor of Science in Engineering Management/Master of Public Administration
These co-terminal degrees allow students to gain greater knowledge in specialized areas while, in most cases, completing a smaller number of credit hours with increased scheduling flexibility. For more information, please visit the Department of Civil, Architectural, and Environmental Engineering website (engineering.iit.edu/caee ).
Certificate in Engineering Graphics and CAD
Engineering graphics is an indispensable communication and design tool which is concerned with the graphical representation of designs and specifications for physical objects and data relationships used in engineering, science, business, and technical work. The graphic language, along with the symbolic and verbal languages, enables those engaged in technology to communicate effectively, making it possible for new ideas, designs, and developments to be transformed into useful consumer products. The well-trained engineer, scientist, or technician must be able to make correct graphical representations of engineering structures, designs, and data relationships, as well as possess an ability to express ideas quickly and accurately through the use of the graphic language.
Recognizing the need for drafters and designers with a strong background in special areas of graphics, the Department of Civil, Architectural, and Environmental Engineering offers a Certificate in Engineering Graphics. This certificate is designed to prepare specialists in graphics for positions in business and industry and is only available to students enrolled in a degree program at Illinois Institute of Technology.
This certificate program does not qualify for federal financial aid.
Students completing the specified courses with satisfactory grades will be awarded a certificate of completion.
Students must take:
Code | Title | Credit Hours |
---|---|---|
An introductory Engineering Graphics and Design course 1 | 2-3 | |
EG 305 | Advanced Engineering Graphics and Design | 3 |
EG 306 | Engineering Descriptive Geometry | 3 |
EG 405 | Mechanical Design Graphics | 3 |
EG 406 | Technical and Pictorial Illustration | 3 |
EG 419 | Computer Graphics in Engineering | 3 |
EG 430 | Introduction to Building Information Modeling | 3 |
Total Credit Hours | 20-21 |
1 | CAE 100 and CAE 101, MMAE 232, or an equivalent introductory course. |
Course Descriptions
Introduction to engineering graphics as a problem-solving tool. Basic traditional techniques of orthographic projection, multi-view, pictorial, auxiliary views, dimensioning and tolerance, sectioning, detail drawing. Use of ANSI standards; applications in civil and architectural engineering.
A continuation of CAE 100. Use of PC-based CAD (Computer-Aided Drawing and Design) software for presentation and problem solving in civil and architectural engineering applications. Introduction to basic principles of design.
Measurement of distances and angles. Theory of errors. Study of leveling, traversing, topographic mapping, route surveying, earthwork computation, photometry, and boundary surveys. Practice in the use of tapes, levels, total stations, and PC-based methodology.
This course is an introduction to the engineering profession. The content and delivery have been designed to challenge the student's perspective of oneself and thus make the student a better engineer. The class focus is on developing the skills to become a professional learner and a successful student, increasing team learning skills, self-reflection, enhancing ethical perception and decision making abilities, and understanding the responsibilities as an engineer. In simple terms, the student will begin to "act as an engineer acts."
This course continues the introduction to the engineering profession with further studies of team learning, specializations in engineering, enhancing ethical perception and decision making abilities, and understanding the responsibilities as an engineer. The course also looks deeply at the need for continuous innovation by studying and practicing the entrepreneurial mindset needed to create value for oneself as the student, for one's company, and for society. In simple terms, the student will begin to "act as an engineer acts" and "think like an entrepreneur thinks."
Basic principles of thermodynamics applied to engineering systems using pure substances and mixtures as working fluids. Direct application of the laws of thermodynamics to analysis of closed and open systems, mass and energy flow. Extensive analysis of isentropic processes in cycles, analysis of gas mixtures and psychometrics in heating and cooling systems. Introduction to fluid mechanics and analysis of fluid statics problems.
Complete the development of fluid mechanics and introduce and develop heat and mass transfer analysis techniques. Description and analysis of fluid kinematics, energy and momentum equations applied to internal/external flow in building engineering systems. Development and application of convection, conduction and radiation to one-, two- and three-dimensional systems in steady state and transient regimes of operation as applied to building materials and geometries.
Geology and its relationship to civil engineering; minerals; rocks; soil formation; geologic structure; groundwater hydraulics; frost action in soils, landslides, shoreline erosion, bluff instability; earthquakes; air photo interpretation, soil and rock mechanics in relation to engineering geology; subsurface exploration; dams, reservoirs, tunnels; case-history illustrations.
Equilibrium for particles and rigid bodies. Distributed forces, centroids, centers of gravity, and moments of inertia. Free body diagrams. Application to truss structures. Kinetics of particles: Newton's Laws of motion, energy, and momentum. Kinematics of particles.
The concepts of deformation, strain, and stress. Application of free body diagram in shear force and bending moment diagram. Elementary bending theory, normal and shear stresses in beams, and beam deflection. Axially loaded members and Euler buckling theory. Plane stress and strain, Mohr's circle, and torsion of circular sections. Combined loading.
Fundamental concepts; fluid statics; properties of fluid in motion; fluid flows through orifices, weirs and venturi meters; laminar and turbulent flow in closed conduits; flow in open channels; turbo machinery; measurement in fluid mechanics and hydraulics.
Design loads, factors of safety; load and resistance factors for steel structures. Experimental and analytical study of steel materials subjected to various states of stress. Failure theories, yield and post-yield criteria are treated. Fatigue and facture mechanics phenomena are related to design practice. The design of tension member, beams, and columns in steel.
The analysis of statically determinate trusses and frames. Determination of internal forces and calculation of deflections. Application of the principle of virtual work and energy methods. Column stability.
Design loads, factor of safety, load and resistance factors for concrete structures. Properties of concrete-making materials and the proportioning of concrete mixtures. Experimental and analytical study of plain and reinforced concrete subjected to various states of stress. Failure theories and the ultimate strength of plain and reinforced concrete structural components. The design of beams, columns, and slabs in reinforced concrete.
Systems concept process, interest rate, present and future worth values, evaluation of alternatives, and elements of microeconomics. Theory of probability, laws of probabilities, random variables and distribution functions, functions of random variables, statistical estimations of data, mean and standard deviation, correlation, and regression analysis.
Physical principles of elastic and plastic deformation of construction. Mechanical testing methods including tensile, compressive, toughness, creep and fatigue. Properties of concrete, wood, iron and steel and other construction materials. The emphasis is on concepts from solid mechanics which explain the behavior of materials to the extent needed in the design of load-bearing constructs.
Physical and mechanical properties of soil; elementary principles of soil identification and testing. Principles of soil permeability and seepage, consolidation, failure theories, earth pressures, and bearing capacity. Laboratory included.
Study of the physical interaction of climate (humidity, temperature, wind, sun, rain, snow, etc.) and buildings. Topics include psychrometrics, indoor air quality, indoor thermal comfort, heat transfer, air infiltration, solar insolation, and heating and cooling load calculation.
Introduction to electrical and electronic circuits. AC and DC steady state and transient network analysis. Phasors, AC and Three Phase Power. Diodes, transistors, and operational amplifiers.
Collection and distribution of water. Flow of fluids through orifices, weirs, venturi meters. Laminar and turbulent flow in closed conduits. Open channel flow. Model analysis using the principles of dimensional analysis. Rainfall and runoff.
Basic sound physics and sound propagation in enclosed spaces. Sound and vibration sources in and out of buildings. Theories of sound transmission through building elements. Effects of noise and vibration on man and buildings, criteria and standards. Design of noise control systems. Calculation of airborne and impact sound insulation. Noise and vibration control implementations in various indoor spaces, such as residential units, offices, schools and mechanical rooms.
Design of modern bridges, bridge design requirements, LRFD approach, seismic and wind effects, fatigue in bridges, support design.
This course will discuss the design of acoustic spaces such as conference rooms, classrooms, lecture halls, music halls, theater, churches, recording studio, and home theater. Course covers the selection and determination of appropriate steady state, spatial, and temporal acoustic measures such as background noise levels, reverberation time, speech transmission index, and interaural cross correlation, as well as the selection of building materials and layout of rooms to meet those requirements.
Kinematics of Particles, Newton's laws of motion, energy and momentum. Kinematics of rigid bodies. Fundamentals of free, forced, and transient vibration of single and multi-degree of freedom structures. Analysis and design of structures for wind and earthquake loadings. Building code requirements. Instructor's consent may be granted to students who do not meet the prerequisite.
The analysis of statically indeterminate frames. Application of classical methods including superposition, slope deflection, and moment distribution. Introduction to the direct stiffness method and computer analysis of structures.
Basic traffic engineering studies including traffic volume, speed, accident, and parking studies. Capacity and analysis for various traffic facilities. Design of traffic control devices.
Pavement types, stresses in flexible and rigid pavements, vehicle pavement interaction. Mathematical models for pavement systems, sub grade support, design of flexible and rigid pavements. Construction procedure, drainage considerations, environmental effects. Rehabilitation and maintenance of pavements.
Design and analysis of facilities of transportation systems. Integration of select transportation components and their interrelationships. Design of specific facilities: guide ways, terminals, and other elements for railroads, airports, and harbors.
History of railroad industry. Train operation, train make-up, and handling. Design and analysis of railroad track structure, track irregularities, and their representation. Vehicle/track interaction and dynamic problems associated with it. Performance of railway vehicles.
Highway functions, design controls and criteria, element of design, cross-section elements, local roads and streets, at-grade intersections, grade separation and interchanges, highway capacity analysis, and introduction to pavement management.
Description and concept of risk, relationship between the likelihood of loss and the impact of loss, engineering hazards assessment and risk identification and evaluation using fault tree analysis, failure mode and effect analysis, etc., risk analyses applications with practical statistics.
Review and introduction to fluid dynamics applied to sprinklers, standpipes, fire pumps, and special suppression systems; hydraulic design criteria and procedures for sprinklers requirements, standpipes, fire pumps, special suppression systems, and detection and alarm systems using nationally recognized design (National Fire Protection Association) standards, water supply requirement systems and distributions.
Introduction to fire, physics and chemistry, and mass and heat transfer principles, fire fluid mechanic fundamentals, fundamentals and requirements of the burning of materials (gases, liquids, and solids), fire phenomena in enclosures such as pre-flashover and post-flashover.
Fundamentals of building design for fire and life safety. Emphasis on a systematic design approach. Basic considerations of building codes, fire loading, fire resistance, exit design, protective systems, and other fire protection systems.
Introduction to probability, modeling, and identification of nondeterministic problems in civil engineering. Development of stochastic concepts and simulation models and their relevance to design and decision problems in various areas of civil engineering.
Design of steel beams, plate girders, and beam columns. Bolted and welded connections. Design of typical frame systems.
Design of reinforced concrete building frames and continuous structures. Design of girders, slabs, columns, foundations, and retaining walls.
Building repair and retrofit issues are discussed. Specific requirements of a building for repair and/or reconstruction are emphasized. Methods of assessing building conditions, including forensic structural engineering are covered. Repair and strengthening methods based on types of materials (steel, concrete, masonry, timber), occupancy and function (residential, commercial), and building values are covered along with demonstration case studies and illustrative examples.
The analysis of structures (prototypes) with the aid of models constructed from metal, wood, plastics, and other materials. Geometrical, mathematical, demonstration, graphical and direct and indirect models will be treated. Comparisons of experimental results with results from computer models will be made. Similitude and the theory of models will be treated. Individual and group project work will be emphasized.
Design of unreinforced and reinforced masonry structural elements and structures. Serviceability and ultimate capacity design. Seismic response, resistance, and design. Design of wood columns and bending members. Mechanical fasteners and connectors. Instructor's consent may be granted to students who do not meet the prerequisite.
Review of blast effects produced by solid phase weapons and their effects on structures and people. Estimation of the risk of threats to security of public and private systems and facilities. Review of simplified structural methods for the analysis and design of structures to meet homeland security concerns and procedures to minimize casualties. Analysis of post-attack fires and how to prevent them. Examination of potential risk to security of infrastructure systems. Development of contingency plans to include evacuation preparedness at time of emergency.
Geographic information system (GIS) technology allows databases which display and query information in new ways. This course will teach general GIS and GPS skills and concepts, useful to students and practitioners in a variety of disciplines. Students will complete a final GIS project relevant to their field of study. This hands-on class will use ESRI's Arc View and Spatial Analyst products, as well as Trimble GeoExplorer GPS units.
This is a project-based course in which students will compete in the Department of Energy's annual Race to Zero home design competition. The goal is for an interdisciplinary team of students to design and provide full documentation for a home that meets the Department of Energy's Zero Energy Ready Home Requirements. Teams are expected to effectively and affordably integrate principles of building science, construction engineering and management, economic analysis, and architectural design in an integrated design process. Teams will be required to submit full sets of plans, drawings, renderings, construction details, and analyses for energy efficiency, costs, and affordability. The competition is designed to provide the next generation of architects, engineers, construction managers, and entrepreneurs with skills and experience to start careers in clean energy and generate creative solutions to real-world problems. CAE 446 is the first course in a two-course series. CAE 446 focuses on aspects of the building design. Priority is given to Architectural Engineering and Architecture majors.
This is a project-based course in which students will compete in the Department of Energy's annual Race to Zero home design competition. The goal is for an interdisciplinary team of students to design and provide full documentation for a home that meets the Department of Energy's Zero Energy Ready Home Requirements. Teams are expected to effectively and affordably integrate principles of building science, construction engineering and management, economic analysis, and architectural design in an integrated design process. Teams will be required to submit full sets of plans, drawings, renderings, construction details, and analyses for energy efficiency, costs, and affordability. The competition is designed to provide the next generation of architects, engineers, construction managers, and entrepreneurs with skills and experience to start careers in clean energy and generate creative solutions to real-world problems. CAE 447 is the second course of a two-course series. CAE 447 focuses on the final project reporting and submission. Priority is given to Architectural Engineering and Architecture majors.
Methods of subsoil exploration. Study of types and methods of design and construction of foundations for structures, including single and combined footings, mats, piles, caissons, retaining walls, and underpinning. Drainage and stabilization.
Study of plumbing systems, water supply, and venting systems. Study of fire protection systems for buildings including pipe sizing, pumps, sprinklers, gravity and pressure vessels, and controls.
Design of building exteriors, including the control of heat flow, air and moisture penetration, building movements, and deterioration. Study of the principle of rain screen walls and of energy conserving designs. Analytical techniques and building codes are discussed through case studies and design projects.
Study of the fundamental principles and engineering procedures for the design of heating, ventilating, and air conditioning systems; HVAC system characteristics; system and equipment selection; duct design and layout. Attention is given to energy conservation techniques and computer applications.
Identification of the optimal energy performance achievable with various types of buildings and service systems. Reduction of infiltration. Control systems and strategies to achieve optimal energy performance. Effective utilization of daylight, heat pumps, passive and active solar heaters, heat storage and heat pipes in new and old buildings.
Study of the analysis and design of electrical systems in buildings utilizing the National Electric Code. Topics include AC, DC, single-phase and three-phase circuits, transients, branch circuits, panel boards, system sizing, fault calculations and overcurrent protection design. Also studies the design and specification of emergency power backup and alternative power systems.
An intensive study of the calculation techniques and qualitative aspects of good luminous design. Topics covered include: photometric quantities and color theory, visual perception, standards, daylight and artificial illumination systems, radiative transfer, fixture and lamp characteristics, control devices, and energy conservation techniques. Design problems, field measurements, computer, and other models will be used to explore major topics.
Architectural Design is the first of a two-part sequence of architectural design and planning for architectural engineers. Students learn the basic theory and practice of the architectural design process from the architect's perspective. Topics include the logical process of architectural design development, integration of code requirement, design approach, and architectural presentation techniques taught through lecture and lab instruction.
The role of estimating in construction contract administration. Types of estimates. Unit costs and production rates; job costs. Preparing bid for complete building project using manual methods and the CSI format; checking quantity take-off and cost estimating in selected divisions using a computer package.
Planning, scheduling, and progress control of construction operations. Critical Path Method and PERT. Resource leveling of personnel, equipment, and materials. Financial control/hauling of construction projects. Impact of delay on precedence networks. Construction contract administration. Computer applications.
Construction site layout and mobilization. Liabilities of the parties. Methods of construction. Concrete form design and fabrication. Scaffolding, temporary facilities, and equipment. Safety on sites. Introduction to construction productivity.
Characteristics of the construction industry. Project delivery systems. Duties and liabilities of the parties at the pre-contract stage. Bidding. Contract administration including duties and liabilities of the parties regarding payments, retainage, substantial and final completion, scheduling and time extensions, change orders, changed conditions, suspension of work, contract termination, and resolution of disputes. Contract bonds. Managing the construction company. Labor law and labor relations.
Uniform flow design; backwater profiles in natural streams; gradually varied flow practical problems; spatially varied flow; flow through nonprismatic and nonlinear channels; gradually varied unsteady flow; rapidly varied unsteady flow; flood routing; numerical solutions of open channels.
Theory of water flow through porous media. Site improvement techniques including grading and drainage, dewatering, reinforcement, and slurry trenches. Soil improvement techniques including replacement, in situ compaction, preloading and subsurface drainage, grouting, freezing, prewetting, and heating.
Special research problems in civil and architectural engineering under individual supervision of instructor. Seminar presentation is required. (Credit: Variable; maximum 4 credit hours). Prerequisite: Senior standing, minimum GPA of 3.0, and consent of the instructor.
A group project requiring the integration of multiple engineering disciplines to satisfy client requirements for a real engineering project. Students will be required to demonstrate mastery in the application of numerous engineering disciplines to a project, work as a member of an integrated engineering team, and demonstrate the ability to understand and communicate engineering solutions to a client verbally, visually, and in written form. Course is required to satisfy ABET program objectives.
Special design project under individual supervision of instructor. Prerequisite: Senior standing, minimum GPA of 3.0, and consent of instructor.
Designed for students in business, liberal arts and non-technical programs. Basic drafting techniques and applications, lettering, geometric constructions, charts and graphs, technical sketching, multiview projection, pictorial drawings, dimensioning, blueprint reading and working drawings. Introduction to computer graphics. Credit for this course is not applicable to an engineering degree.
Advanced study of auxiliary views and sectioning, gears and cams, threads and fasteners, working drawings, assembly drawings, electronic drafting, ANSI drafting standards, and computer-aided drawing and design. Engineering design project.
Graphic solutions of problems involving point, line, and plane relationships by auxiliary views and revolutions. Developments and intersections of surfaces. Parallelism and perpendicularity, vectors, mining and civil engineering applications. Shades and shadows, conics, map projection and spherical triangles. Emphasis on applications which promote visualization and introduce new engineering experiences. Applications of computers to problem solving.
Threads and fasteners, sectioning and auxiliary views, limit dimensioning, detail and assembly drawings, data representation, principles of descriptive geometry, manufacturing processes and computer graphics/CAD. Credit for this course is not applicable to an engineering degree.
Basic techniques of graphics applied to communications and report writing. Use of computer graphics to generate charts and graphs including line charts, two- and three-dimensional bar charts, and pie charts. Integration of graphical presentations into technical and business reports. Credit for this course is not applicable to an engineering degree.
Basic concepts of mechanical design and analysis. Advanced design layouts, details, assemblies, tolerance systems, surface finish control, materials, processes, ANSI drafting standards, engineering design processes, systems and procedures, application of computers to design, and CAD/CAM. Requires junior standing.
Theory and construction of parallel and perspective pictorial projections, axonometric and oblique projections, parallel and angular perspective. Exploded pictorial assemblies. Basic rendering techniques used in technical illustration. Introduction to computer-generated pictorials. Requires junior standing.
Study of computer-generated representations of three-dimensional objects. Projections include multiview, perspective, axonometric (isometric, dimetric, and trimetric), and oblique.
Techniques of PC-based (AutoCAD) computer-aided drawing and design. Study of computer graphic hardware and software systems through demonstrations and use. Both 2D and 3D representation of components and assemblies from various engineering disciplines. Requires junior standing.
Principles and applications of computer graphics in business and nontechnical fields. Study of computer graphics hardware and software systems. Use of computer in producing charts, graphs, and technical drawings. Use of PC-CAD in problem solving and design. Credit for this course is not applicable to an engineering degree. Requires junior standing.
Integration of computer graphic-generated images into technical and business reports produced with popular desktop publishing software. Emphasis on creation and selection of graphical presentations for optimum readability. Scanning and retouching techniques for two- and three-dimensional presentations. Introduction to multi-media and slide presentations. Credit for this course is not applicable to an engineering degree. Junior standing required.
Fundamentals and practical use of information technologies in design; basic concepts of building information modeling (BIM); review of software and technology available for BIM; practical use of BIM in design for creating a site, viewing a model, starting a project, working in the AutoDesk "Revit" Environment, adding basic building elements to a project, conceptual energy analysis, designing a preliminary layout, and presenting a project.
Special problems. Requires junior standing.
This course will introduce students to theories, processes, and best practices that invoke creativity, innovation, inventions, and entrepreneurship in engineers and scientists to create a patentable technology by the end of the semester. Skills will be developed in understanding and searching for patents, learning and applying brainstorming, team learning, exploring deep needs, market and industry analysis, finding "white space," and creating effective elevator pitches for your idea. Students will learn to support and pitch the need, uniqueness of their approach, cost versus benefits, competition, and alternatives so their ideas can take advantage of the exponential economy.
This course intends to introduce and develop a number of diversified professional skills necessary for success in an engineering research and development environment. Selected topics in the areas of technology entrepreneurship, opportunity assessment, creativity and innovation, project management, management of organizational change, and entrepreneurial leadership are discussed. Significant effort is placed on understanding and managing intellectual property.
Introduction and practice of project form of organization for accomplishing tasks in engineering firms. Develops the attributes required of a project manager. Introduction to project management form most appropriate for engineering tasks, evaluating projects for funding, establishing planning, budgeting, and initiation process, extensive analysis of scheduling techniques, resource allocation during scheduling, monitoring project progress, the project control cycle, avoiding scope creep, auditing projects and completion of the project. The case study method is used throughout the class to provide students experiential-learning opportunities. This class cannot be substituted for courses in the construction management major in CAEE.
This course provides an overview of how environmental engineers integrate biological, chemical, and physical sciences with engineering to develop solutions to environmental problems. Topics include air pollution, water pollution, solid waste, fate and transport of contaminants, and pollution prevention.
The theory and practice involved in planning and design of urban water systems are introduced in this course. Topics include storm water management, water supply distribution, and waste water collection and transport systems.
Water quality and water supply issues make up this course including the physical, chemical, and biological processes involved in water treatment. Process design, operations, and management are also considered.
Air pollution sources and characteristics of source emissions, atmospheric reactions, effects of pollutants, and techniques of emission control are presented in this course. Legal and administrative aspects of air pollution control are also described.
Design of control systems to enhance occupational safety and health; how to recognize and control existing or potential safety and health hazards.
This course provides an overview of industrial ecology, the study of the science and engineering relationships between cultural and ecological systems, and how those relationships can be managed to achieve a more sustainable economy. Because it is an interdisciplinary field, topics include technology (science and engineering), public policy and regulatory issues, and business administration.
Special design project under individual supervision of instructor. Consent of instructor is required.