Biomedical Engineering (BME)

BME 100
Introduction to the Profession

Introduces the student to the scope of the biomedical engineering profession and its role in society, and develops a sense of professionalism in the student. Provides an overview of biomedical engineering through lectures, presentations by outside speakers, hands-on exercises, and scientific literature analyses. Develops professional communication and teamwork skills.

Lecture: 1 Lab: 2 Credits: 2
Satisfies: Communications (C)
BME 200
Biomedical Engineering Application of MATLAB

This course will provide students an opportunity to learn how to use the MATLAB programming environment to solve biomedical engineering problems. Students will learn basic MATLAB functions for importing, analyzing, visualizing, and exporting data, as well as computational techniques for modeling and solving quantitative engineering problems. Examples will be taken from the three areas of specialization offered in the biomedical engineering department -- cell and tissue engineering, neural engineering, and medical imaging.

Prerequisite(s): [(CS 115 and MATH 252*)]An asterisk (*) designates a course which may be taken concurrently.
Lecture: 1 Lab: 3 Credits: 2
BME 301
Bio-Fluid Mechanics

Basic properties of fluids in motion. Lagrangian and Eulerian viewpoints, material derivative, streamlines. Continuity, energy, angular and linear momentum equations in integral and differential forms. Applications in biofluids and biomedical devices; rheology of biological fluids.

Prerequisite(s): [(BIOL 115, MATH 251, and MMAE 200)]
Lecture: 3 Lab: 0 Credits: 3
BME 309
Biomedical Imaging

An introduction to biomedical imaging concepts and modalities. Topics covered include general principles of image science (image quality, sampling, etc.), X-ray-based imaging [conventional x-ray imaging, mammography, computed tomography (CT), and digital subtraction angiography (DSA)], and nuclear medicine [gamma camera, single photon emission computed tomography (SPECT), and positron emission tomography (PET)].

Prerequisite(s): [(BME 330* and PHYS 221)]An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3
BME 310
Biomaterials

Applications of biomaterials in different tissue and organ systems. Relationship between physical and chemical structure of materials and biological system response. Choosing, fabricating, and modifying materials for specific biomedical applications.

Prerequisite(s): [(BME 100 and CHEM 125)]
Lecture: 3 Lab: 0 Credits: 3
Satisfies: Communications (C)
BME 315
Instrumentation and Measurement Laboratory

Laboratory exercises stress instrumentation usage and data analysis used to determine physiological functions and variables and the relations to the physiological variability.

Prerequisite(s): [(BME 200 and BME 330*)]An asterisk (*) designates a course which may be taken concurrently.
Lecture: 1 Lab: 3 Credits: 2
Satisfies: Communications (C)
BME 320
Fluids Laboratory

Laboratory experiments in thermodynamics, biological fluid flow, and heat transfer. Emphasis is placed on current methods, instrumentation, and equipment used in biomedical engineering; oral presentation of results; and on the writing of comprehensive reports. Open only to Biomedical Engineering majors.

Prerequisite(s): [(BIOL 115 and BME 315)]
Lecture: 0 Lab: 3 Credits: 1
Satisfies: Communications (C)
BME 325
Bioelectronics Laboratory

Practical hands on design, construction and testing of electric and electronic circuitry for biomedical applications. Basic concepts will be presented with emphasis on their relevance to the design of systems that can be used for clinical and basic scientific research.

Prerequisite(s): [(BME 315)]
Lecture: 0 Lab: 3 Credits: 1
BME 330
Analysis of Biosignals and Systems

This course is a junior level introduction to the theoretical and practical aspects of signal processing and dynamic systems behavior as they relate to physiological, biological, and biomedical systems. The topics covered will include sampling theory, continuous and discrete Fourier transforms and series, Laplace transforms, Linear systems theory, signal filtering, models of biological and physiological systems, and analysis of dynamic and feedback systems.

Prerequisite(s): [(BME 200)]AND[(ECE 211) OR (ECE 215)]AND[(MATH 252)]
Lecture: 3 Lab: 0 Credits: 3
BME 331
Modeling and Control of Biological Systems

The course expands upon the systems and signal processing concepts introduced in BME 330 to develop the tools to model physiological processes and the feedback control of these processes.

Prerequisite(s): [(BME 330) OR (ECE 308)]
Lecture: 3 Lab: 0 Credits: 3
BME 335
Thermodynamics of Living Systems

Principles of thermodynamics and conservation of mass applied to living systems and biomedical devices. The first and second laws of thermodynamics, pHs and chemical equilibrium, metabolic stoichiometry and energetics.

Prerequisite(s): [(BME 320*, CHE 202, and MATH 251)]An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3
BME 405
Physiology Laboratory

A laboratory course which demonstrates basic concepts of bioengineering design through experimental procedures involving humans and experimental animals. Statistical principles of experimental design. Study of possible errors. Experiments include nerve action, electrocardiography, mechanics of muscle, membranes, and noninvasive diagnostics in humans. Open only to Biomedical Engineering majors.

Corequisite(s): BME 453
Prerequisite(s): [(BME 315)]
Lecture: 1 Lab: 3 Credits: 2
Satisfies: Communications (C)
BME 417
Technologies for Treatment of Diabetes

Study of physiological control systems and engineering of external control of biological systems by focusing on an endocrine system disorder -- diabetes. The effects of type 1 diabetes on glucose homeostasis and various treatment technologies for regulation of glucose concentration. Development of mathematical models describing the dynamics of glucose and insulin concentration variations, blood glucose concentration measurement and inference techniques, insulin pumps, and artificial pancreas systems.

Lecture: 3 Lab: 0 Credits: 3
BME 418
Reaction Kinetics for BME

This course focuses on analysis of rate data and single and multiple reaction schemes. Biomedical topics include biological systems, enzymatic pathways, enzyme and receptor-ligand kinetics, pharmacokinetics, heterogeneous reactions, microbial cell growth and product formation, and the design and analysis of biological reactors.

Corequisite(s): BME 482
Prerequisite(s): [(BME 301, BME 335, and MATH 252)]
Lecture: 3 Lab: 0 Credits: 3
BME 419
Introduction to Design Concepts in Biomedical Engineering

Introduction to Design Concepts in Biomedical Engineering. This course aims to educate students on project definition, and on the design, development and technology transfer of potential biomedical products in the context of the student's major capstone project. Students will learn best practices for designing a marketable medical device, including the design process from the clinical problem definition through prototype and clinical testing to market readiness.

Prerequisite(s): [(BME 315, BME 320, and BME 330)]
Lecture: 2 Lab: 0 Credits: 2
Satisfies: Communications (C)
BME 420
Design Concepts in Biomedical Engineering

An introduction to the strategies and fundamental bioengineering design criteria behind the development of biomedical engineering systems and implantable devices that use either synthetic materials or hybrid (biological-synthetic)systems. Analysis and design of replacements for the heart, kidneys, and lungs. Specification and realization of structures for artificial organ systems. Students will be required to complete a team-oriented design project in their chosen track.

Prerequisite(s): [(BME 419)]
Lecture: 3 Lab: 0 Credits: 3
Satisfies: Communications (C)
BME 422
Mathematical Methods for Biomedical Engineers

This course integrates mathematical and computational tools that address directly the needs of biomedical engineers. The topics covered include the mathematics of diffusion, pharmacokinetic models, biological fluid mechanics, and biosignal representations and analysis. The use of MATLAB will be emphasized for numerically solving problems of practical relevance.

Prerequisite(s): [(BME 330 and MATH 252)]
Lecture: 3 Lab: 0 Credits: 3
BME 423
Cell Biomechanics: Principles and Biological Processes

This course will provide students an opportunity to learn about mechanical forces that develop in the human body and how they can influence cell functions in a range of biological processes from embryogenesis, wound healing, and regenerative medicine to pathological conditions such as cancer invasion. Examples of research methods for investigating cell biomechanics in various biological systems will be discussed.

Prerequisite(s): [(BME 301)]
Lecture: 3 Lab: 0 Credits: 3
BME 424
Quantitative Aspects of Cell and Tissue Engineering

This course is designed to cover fundamentals of cell and tissue engineering from a quantitative perspective. Topics addressed include elements of tissue development, cell growth and differentiation, cell adhesion, migration, molecular and cellular transport in tissues and polymeric hydrogels for tissue engineering and drug delivery applications.

Prerequisite(s): [(BME 418 and BME 482)]
Lecture: 3 Lab: 0 Credits: 3
BME 425
Microfluidics for Biomedical Engineering

This course will present fundamentals and applications of microfluidic technologies for applications in the broad biomedical engineering. It will provide a broad view of the field of microfluidics and a knowledge of relevant fabrication methods and analysis techniques. Microfluidic fabrication techniques, interfacing with biological materials, and techniques for analyte detection in microchannels will be emphasized. The course will include individual projects and critical paper reviews in which each student is expected to demonstrate a grasp of basic concepts in microfluidic design and fabrication for specific applications.

Lecture: 3 Lab: 0 Credits: 3
BME 431
Modern Optics and Lasers

This is an undergraduate course covering the basics of optics and modern aspects of the field such as lasers and nonlinear optics. Connections to other fields such as acoustics, microwaves, electron-beam optics, quantum mechanics will be pointed out. The theory will be supplemented with demonstration experiments of optical phenomena. Practical problems will be discussed such as the design of an optical imaging system or precision interferometry.

Prerequisite(s): [(PHYS 221)]
Lecture: 3 Lab: 0 Credits: 3
BME 433
Biomedical Engineering Applications of Statistics

Application of modern computing methods to the statistical analysis of biomedical data. Sampling, estimation, analysis of variance, and the principles of experimental design and clinical trials are emphasized.

Prerequisite(s): [(MATH 251 and MATH 252)]
Lecture: 3 Lab: 0 Credits: 3
BME 437
Introduction to Molecular Imaging

This course provides an overview of molecular imaging, a subcategory of medical imaging that focuses on noninvasively imaging molecular pathways in living organisms. Topics include imaging systems, contrast agents, reporter genes and proteins, tracer kinetic modeling. Preclinical and clinical applications will also be discussed with an emphasis on cancer and the central nervous system.

Prerequisite(s): [(BME 330) OR (ECE 308)]AND[(MATH 252)]
Lecture: 3 Lab: 0 Credits: 3
BME 438
Neuroimaging

This course describes the use of different imaging modalities to study brain function and connectivity. The first part of the course deals with brain function. It includes an introduction to energy metabolism in the brain, cerebral blood flow, and brain activation. It continues with an introduction to magnetic resonance imaging (MRI), perfusion-based fMRI, BOLD fMRI, fMRI paradigm design and statistical analysis, introduction to positron emission tomography (PET) and studying brain function with PET, introduction to magneto encephalography and studying brain function with (MEG). The second part of the course deals with brain connectivity. It includes an introduction to diffusion tensor MRI, explanation to the relationship between the diffusion properties of tissue and its structural characteristics, white matter fiber tractography.

Prerequisite(s): [(BME 315 and PHYS 221)]
Lecture: 3 Lab: 0 Credits: 3
BME 439
Advanced Medical Imaging

This course introduces advanced clinical imaging modalities, research imaging techniques, and concepts from image science and image perception. The first part of the course introduces the perception of image data by human observers and the visualization of brain structure and function. It includes an introduction to magnetic resonance imaging (MRI) and a survey of neurological imaging via functional MRI (fMRI). The second part of the course covers image science, clinical imaging applications, and novel research imaging techniques. It includes an introduction to radiation detection and image quality evaluation, a survey of clinical cases, and an overview of new imaging methods.

Prerequisite(s): [(BME 309)]
Lecture: 3 Lab: 0 Credits: 3
BME 443
Biomedical Instrumentation and Electronics

Principles of circuit analysis are applied to typical transducer and signal recording situations found in biomedical engineering.

Prerequisite(s): [(BME 315)]
Lecture: 3 Lab: 0 Credits: 3
BME 445
Quantitative Neural Function

Computational approach to basic neural modeling and function, including cable theory, ion channels, presynaptic potentials, stimulation thresholds, and nerve blocking techniques. Synaptic function is examined at the fundamental level.

Prerequisite(s): [(BME 315)]
Lecture: 3 Lab: 0 Credits: 3
BME 450
Animal Physiology

Respiration; circulation; energy metabolism; temperature regulation; water and osmotic regulation; digestion and excretion; muscle and movement; nerve excitation; information control and integration; chemical messengers. Emphasis on general principles with examples drawn from various animal phyla. Same as BIOL 430.

Prerequisite(s): [(BIOL 107) OR (BIOL 115)]
Lecture: 3 Lab: 0 Credits: 3
BME 452
Control Systems for Biomedical Engineers

Control systems design and analysis in biomedical engineering. Time and frequency domain analysis, impulse vs. step response, open vs. closed loop response, stability, adaptive control, system modeling. Emphasis is on understanding physiological control systems and the engineering of external control of biological systems.

Prerequisite(s): [(BME 330)]
Lecture: 3 Lab: 0 Credits: 3
BME 453
Quantitative Physiology

The primary objective of this course is to introduce students to basic physiological concepts using a quantitative approach. The main systems that control the human body functions will be reviewed to enable the students to understand the individual role of each major functional system as well as the need for the integration or coordination of the activities of the various systems. Attempts will be made to highlight the patho-physiological consequences of defects or failures in the organ systems, and the relevant corrective approaches. This course will include lectures from individuals who have relevant expertise in the different organ systems because of the complexity of the human body.

Corequisite(s): BME 405
Prerequisite(s): [(BME 100)]
Lecture: 3 Lab: 0 Credits: 3
BME 455
Cardiovascular Fluid Mechanics

Anatomy of the cardiovascular system. Scaling principles. Lumped parameter, one-dimensional linear and nonlinear wave propagation, and three-dimensional modeling techniques applied to simulate blood flow in the cardiovascular system. Steady and pulsatile flow in rigid and elastic tubes. Form and function of blood, blood vessels, and the heart from an engineering perspective. Sensing, feedback, and control of the circulation. Possible project using custom software to run blood flow simulations. Same as MMAE 455.

Prerequisite(s): [(BME 301) OR (MMAE 310) OR (MMAE 313)]
Lecture: 3 Lab: 0 Credits: 3
BME 475
Neuromechanics of Human Movement

Concepts from mechanics and neurophysiology will be introduced and employed to analyze and model human movement, especially of the extremities. Topics will include forward and inverse kinematics and dynamics, muscle modeling, and feedback control.

Prerequisite(s): [(BME 330) OR (ECE 308) OR (MMAE 305)]
Lecture: 3 Lab: 0 Credits: 3
BME 482
Mass Transport for Biomedical Engineers

This course seeks to provide students with an introduction to advanced concepts of mass transport with an emphasis on biological systems. Students will be exposed to derivation of the conservation equations for heat, mass, and momentum. Following derivation of these laws, focus will be placed on mass transport applications, including diffusion, convection-diffusion, diffusion with reactions, and facilitated diffusion. Students will be able to apply mass transport equations to solve problems in biological systems.

Prerequisite(s): [(BME 301 and CHE 202)]
Lecture: 3 Lab: 0 Credits: 3
BME 490
Senior Seminar

Professional issues in bioengineering. Role of bioengineers in industry. Professional identity. Structure of bioengineering industries and product development process. Job market analysis. Current employment opportunities. Recruiting process and interview. Analysis of employer. Marketing versus engineering. Management by objective. Role of higher degrees.

Lecture: 1 Lab: 0 Credits: 1
Satisfies: Communications (C)
BME 491
Independent Study

Focused reading and study under the supervision of a BME faculty member. A final written report is required to receive credit. **Instructor permission required.**

Credit: Variable
Satisfies: Communications (C)
BME 492
Undergraduate Research

Independent research (experimental or theoretical/computational) under the supervision of a BME faculty member. A final written report is required to receive credit. **Instructor permission required.**

Credit: Variable
Satisfies: Communications (C)
BME 493
BME Undergraduate Project

Research or design projecting involving 2 or more students under supervision of a BME faculty member. A final written report from each student is required to receive credit. **Instructor permission required.**

Lecture: 3 Lab: 0 Credits: 3
BME 497
Special Problems

Design, development, analysis or research on special topics defined by a faculty member or the department. **Instructor permission required.**

Lecture: 0 Lab: 0 Credits: 3
BME 500
Introduction to Biomedical Engineering

Introduction to the concepts and research in biomedical engineering. Provides an overview of current biomedical engineering research areas, emphasis on application of an engineering approach to medicine and physiology signals.

Lecture: 3 Lab: 0 Credits: 3
BME 501
Communication Skills in Biomedical Engineering

Students will be taught to critically analyze manuscripts in the biomedical engineering literature. They will write a critique of the manuscripts, discuss the manuscripts in class, and prepare power point presentations that will be presented and evaluated by the entire class.

Lecture: 3 Lab: 0 Credits: 3
BME 503
Mathematical and Statistical Methods for Neuroscience I

This quarter introduces mathematical ideas and techniques in a neuroscience context. Topics will include some coverage of matrices and complex variables; eigen value problems, spectral methods and Greens functions for differential equations; and some discussion of both deterministic and probabilistic modeling in the neurosciences. Instructor permission required.

Lecture: 2 Lab: 0 Credits: 2
BME 504
Neurobiology

This course is concerned with the structure and function of systems of neurons, and how these are related to behavior. Common patterns of organization are described from the anatomical, physiological, and behavioral perspectives of analysis. The comparative approach is emphasized throughout. Laboratories include exposure to instrumentation and electronics, and involve work with live animals. A central goal of the laboratory is to expose students to in vivo extracellular electrophysiology in vertebrate preparations. Laboratories will be attended only on one day a week but may run well beyond the canonical period. Instructor permission required.

Lecture: 2 Lab: 0 Credits: 2
BME 505
Mathematical and Statistical Methods for Neuroscience II

This quarter treats statistical methods important in understanding nervous system function. It includes basic concepts of mathematical probability; information theory, discrete Markov processes, and time series. Instructor permission required.

Prerequisite(s): [(BME 503)]
Lecture: 2 Lab: 0 Credits: 2
BME 506
Computational Neuroscience II: Vision

This course considers computational approaches to vision. It discusses the basic anatomy and physiology of the retina and central visual pathways, and then examines computational approaches to vision based on linear and non-linear systems theory, and algorithms derived from computer vision.

Lecture: 3 Lab: 0 Credits: 3
BME 507
Cognitive Neuroscience

This course is concerned with the relationship of the nervous system to higher order behaviors such as perception and encoding, action, attention and learning and memory. Modern methods of imaging neural activity are introduced, and information theoretic methods for studying neural coding in individual neurons and populations of neurons are discussed. Instructor permission required.

Lecture: 2 Lab: 0 Credits: 2
BME 508
Mathematics and Statistics for Neuroscience III

This course covers more advanced topics including perturbation and bifurcation methods for the study of dynamical systems, symmetry methods, and some group theory. A variety of applications to neuroscience with be described. Instructor permission required.

Prerequisite(s): [(BME 503 and BME 505)]
Lecture: 2 Lab: 0 Credits: 2
BME 509
Vertebrate Neural Systems

This lab-centered course teaches students the fundamental principles of mammation neuroanatomy. Students learn the major structures and the basic circuitry of the CNS and PNS. Students become practiced at recognizing the nuclear organization and cellular architecture of many regions in animal brain models. This course is taught at the University of Chicago. Instructor permission required.

Lecture: 3 Lab: 0 Credits: 3
BME 510
Neurobiology of Disease I

This seminar course is devoted to basic clinical and pathological features and pathogenic mechanisms of neurological diseases. The first semester is devoted to a broad set of disorders ranging from developmental to acquired disorders of the central and peripheral nervous system. Weekly seminars are given by experts in the clinical and scientific aspects of the disease under discussion. For each lecture, students are given a brief description of clinical and pathological features of a given set of neurological diseases followed by a more detailed description of the current status of knowledge of several of the prototypic pathogenic mechanisms.

Lecture: 2 Lab: 0 Credits: 2
BME 511
Extracellular Matrices: Chemistry and Biology

Advanced topics dealing with the biology and chemistry of the extracellular matrix, cell-matrix interactions, and current methodologies for engineering these interfaces.

Lecture: 2 Lab: 0 Credits: 2
BME 512
Behavioral Neurosciences

This course is concerned with the structure and function of systems of neurons and how these are related to behavior. Common patterns of organization are described from the anatomical, physiological, and behavioral perspectives of analysis. The comparative approach is emphasized throughout. Laboratories include exposure to instrumentation and electronics and work involvement with live animals.

Lecture: 2 Lab: 0 Credits: 2
BME 513
Methods of Computational Neuroscience: Single Neurons

Topics include, but are not limited to, Hodgkin-Huxley equations, cable theory, single neuron models, information theory, signal detection theory, reverse correlation, relating neural responses to behavior, and rate versus temporal codes. Instructor permission is required.

Lecture: 3 Lab: 0 Credits: 3
BME 516
Biotechnology for Engineers

This course will provide students opportunity to learn about the field of biotechnology and how to apply engineering principles to biological systems and living organisms for betterment of medicines as well as agricultural products. The course covers the introduction to biotechnology with information about cell and molecular biology, the role of enzyme and growth kinetics, media preparations for cell culture and various chromatographic techniques, and antibiotics and its role in secondary metabolic production. Biological effluent treatment and regulatory issues to obtain FDA will be taught. Instructor permission is required.

Lecture: 3 Lab: 0 Credits: 3
BME 517
Technologies for Treatment of Diabetes

Study of physiological control systems and engineering of external control of biological systems by focusing on an endocrine system disorder -- diabetes. The effects of type 1 diabetes on glucose homeostasis and various treatment technologies for regulation of glucose concentration. Development of mathematical models describing the dynamics of glucose and insulin concentration variations, blood glucose concentration measurement and inference techniques, insulin pumps, and artificial pancreas systems.

Lecture: 3 Lab: 0 Credits: 3
BME 518
Reaction Kinetics for Biomedical Engineering

This course is an introduction to the fundamentals of chemical kinetics. Analysis of rate data; single and multiple reaction schemes. Biomedical topics include biological systems, enzymatic pathways, enzyme and receptor-ligand kinetics, pharmacokinetics, heterogeneous reactions, microbial cell growth and product formation, and the design and analysis of biological reactors.

Corequisite(s): BME 482
Prerequisite(s): [(BME 301, BME 335, and MATH 252)]
Lecture: 3 Lab: 0 Credits: 3
BME 519
Cardiovascular Fluid Mechanics

Anatomy of the cardiovascular system. Scaling principles. Lumped parameter, one-dimensional linear and nonlinear wave propagation, and three-dimensional modeling techniques applied to simulate blood flow in the cardiovascular system. Steady and pulsatile flow in rigid and elastic tubes. Form and function of blood, blood vessels, and the heart from an engineering perspective. Sensing, feedback, and control of the circulation. Includes a student project.

Lecture: 3 Lab: 0 Credits: 3
BME 521
Medical Imaging

Study of modern technology for medical imaging. Theory and operation of CAT, SPECT, PET, MRI, X-ray and echo imaging modalities.

Lecture: 3 Lab: 0 Credits: 3
BME 522
Mathematical Methods in Biomedical Engineering

Graduate standing in BME or consent of instructor This course is an introductory graduate level course that integrates mathematical and computational tools that address directly the needs of biomedical engineers. The topics covered include the mathematics of diffusion, pharmacokinetic models, biological fluid mechanics, and biosignal representations and analysis. The use of MATLAB will be emphasized for numerically solving problems of practical relevance.

Lecture: 3 Lab: 0 Credits: 3
BME 523
Cell Biomechanics: Principles and Biological Processes

This course will provide students an opportunity to learn about mechanical forces that develop in the human body and how they can influence cell functions in a range of biological processes from embryogenesis, wound healing, and regenerative medicine to pathological conditions such as cancer invasion. Examples of research methods for investigating cell biomechanics in various biological systems will be discussed. Permission of instructor is required.

Lecture: 3 Lab: 0 Credits: 3
BME 524
Quantitative Aspects of Cell andTissue Engineering

This course is designed to cover fundamentals of cell and tissue engineering from a quantitative perspective. Topics addressed include elements of tissue development, cell growth and differentiation, cell adhesion, migration, molecular and cellular transport in tissues and polymeric hydrogels for tissue engineering and drug delivery applications.

Lecture: 3 Lab: 0 Credits: 3
BME 525
Microfluidics for Biomedical Engineering

This course will present fundamentals and applications of microfluidic technologies for applications in the broad biomedical engineering. It will provide a broad view of the field of microfluidics and a knowledge of relevant fabrication methods and analysis techniques. Microfluidic fabrication techniques, interfacing with biological materials, and techniques for analyte detection in microchannels will be emphasized. The course will include individual projects and critical paper reviews in which each student is expected to demonstrate a grasp of basic concepts in microfluidic design and fabrication for specific applications.

Lecture: 3 Lab: 0 Credits: 3
BME 530
Inverse Problems in Biomedical Imaging

This course will introduce graduate students to the mathematical theory of inverse problems. Concept from functional analysis will be applied for understanding and characterizing mathematical properties of inverse problems. This will permit for the analysis of the stability and resolution of image reconstruction algorithms for various existing and novel biomedical imaging systems. The singular value decomposition (SVD) is introduced and applied for understanding fundamental properties of imaging systems and reconstruction algorithms. Instructor permission required.

Lecture: 3 Lab: 0 Credits: 3
BME 532
Medical Imaging Science

This course is an introduction to basic concepts in medical imaging, such as: receiver operating characteristics, the rose model, point spread function and transfer function, covariance and auto covariance, noise, filters, sampling, aliasing, interpolation, and image registration. Instructor permission required.

Lecture: 3 Lab: 0 Credits: 3
BME 533
Biostatistics

This course is designed to cover the tools and techniques of modern statistics with specific applications to biomedical and clinical research. Both parametric and nonparametric analysis will be presented. Descriptive statistics will be discussed although emphasis is on inferential statistics and experimental design.

Lecture: 3 Lab: 0 Credits: 3
BME 535
Magnetic Resonance Imaging

This is an introduction to the Physics and technology of magnetic resonance imaging (MRI). the topics that are covered include: basic MR physics, source of signal, signal acquisition, pulse sequences, hardware, artifacts, spectroscopy, and advanced imaging techniques. Instructor permission required.

Lecture: 3 Lab: 0 Credits: 3
BME 537
Introduction to Molecular Imaging

This course provides an overview of molecular imaging, a subcategory of medical imaging that focuses on noninvasively imaging molecular pathways in living organisms. Topics include imaging systems, contrast agents, reporter genes and proteins, tracer kinetic modeling. Preclinical and clinical applications will also be discussed with an emphasis on cancer and the central nervous system.

Lecture: 3 Lab: 0 Credits: 3
BME 538
Neuroimaging

This course describes the use of different imaging modalities to study brain function and connectivity. The first part of the course deals with brain function. It includes an introduction to energy metabolism in the brain, cerebral blood flow, and brain activation. It continues with an introduction to magnetic resonance imaging (MRI), perfusion-based fMRI, Bold fMRI, fMRI paradigm design and statistical analysis, introduction to positron emission tomography, (PET) and studying brain function with PET, introduction to magneto encephalography (MEG) and studying brain function with MEG. The second part of the deals with brain connectivity. It includes an introduction to diffusion tensor MRI, explanation of the relationship between the diffusion properties of tissue its structural characteristics, and white matter fiber tractography techniques. Instructor permission required.

Lecture: 3 Lab: 0 Credits: 3
BME 539
Advanced Medical Imaging

This course introduces advanced clinical imaging modalities, research imaging techniques, and concepts from image science and image perception. The first part of the course introduces the perception of image data by human observers and the visualization of brain structure and function. It includes an introduction to magnetic resonance imaging (MRI) and a survey of neurological imaging via functional MRI (fMRI). The second part of the course covers image science, clinical imaging applications, and novel research imaging techniques. It includes an introduction to radiation detection and image quality evaluation, a survey of clinical cases, and an overview of new imaging methods.

Lecture: 3 Lab: 0 Credits: 3
BME 540
Wave Physics and Applied Optics for Imaging Scientists

This course will introduce students to fundamental concepts in wave physics and the analysis of optical wave fields. These principles will be utilized for understanding existing and novel imaging methods that employ coherent radiation. Solutions to inverse scattering and inverse source problems will be derived and algorithmic realizations of the solutions will be developed. Phase contrast imaging techniques and X-ray imaging systems that employ coherent radiation will be studied. Instructor permission required.

Lecture: 3 Lab: 0 Credits: 3
BME 542
Advanced Concepts in Image Science

This graduate level course introduces students to fundamental concepts in image science that are related to the optimization and evaluation of biomedical imaging systems. Topics covered include: deterministic descriptions of imaging systems, stochastic descriptions of imaging systems, statistical decision theory, and objective assessment of image quality.

Prerequisite(s): [(BME 530 and BME 532)]
Lecture: 3 Lab: 0 Credits: 3
BME 543
Bioinstrumentation and Electronics

Principles of circuit analysis are applied to typical transducer and signal recording situations found in biomedical engineering. Basic electrical and electronic circuit theory is reviewed with an emphasis on biomedical measurement applications. a special topic is individually studied by the student and presented to the class electrical physics class or basic circuits.

Lecture: 3 Lab: 0 Credits: 3
BME 551
Physiological Signal Processing and Control Theory

This is the first of a 2 part course co-taught at IIT and the University of Chicago. essential elements of signal processing and control theory as it is applied to physiological systems will be covered. Part I will cover data acquisition and sampling, Laplace and Fourier transforms, filtering, time and frequency domains, system descriptions and lumped vs. distributed parameters. Students will use Mat lab to test concepts presented in class.

Lecture: 2 Lab: 0 Credits: 2
BME 552
Control Systems for Biomedical Engineers

Control systems design and analysis in biomedical engineering. Time and frequency domain analysis, impulse vs. step response, open vs. closed loop response, stability, adaptive control, system modeling. Emphasis is on understanding physiological control systems and the engineering of external control of biological systems.

Lecture: 3 Lab: 0 Credits: 3
BME 553
Quantitative Physiology

The primary objective of this course is to introduce students to basic physiological concepts using a quantitative approach. The main systems that control the human body functions will be reviewed to enable the students to understand the individual role of each major functional system as well as the need for the integration or coordination of the activities of the various systems. Attempts will be made to highlight the patho-physiological consequences of defects or failures in the organ systems and the relevant corrective approaches. This course will include lectures from individuals who have relevant expertise in the different organ systems because of the complexity of the human body.

Lecture: 3 Lab: 0 Credits: 3
BME 575
Neuromechanics of Human Movement

This course will explore how we control movement of our extremities, with concepts drawn from mechanics and neurophysiology. The progression from neurological signals to muscle activation and resulting movement of the hand or foot will be modeled, starting at the periphery and moving back toward the central nervous system. Biomechanics of the limbs will be modeled using dynamic simulation software (Working Model) which will be driven by a neural controller, implemented in MATLAB. Issues related to sensory feedback and redundancy will be addresses.

Lecture: 3 Lab: 0 Credits: 3
BME 581
Fluid Mechanics for Biomedical Engineers

This course is primarily focused on the development of theoretical and experimental principles necessary for the delineation of fluid flow in various in vitro chambers and the cardiovascular system. Its content will primarily deal with the basic concepts of flow in various geometries, the heterogeneous nature of blood and the application of such principles in flow chambers designed to expose blood elements to defined flow conditions. The relationship to flow in the normal and diseased vascular system will also be considered. A basic Fluid Dynamics Course is recommended. Instructor permission required.

Prerequisite(s): [(BME 500)]
Lecture: 3 Lab: 0 Credits: 3
BME 582
Advanced Mass Transport for Biomedical Engineers

This course is primarily focused on the development of theoretical and mathematical principles necessary for the delineation of mass transport processes in biological & medical systems. The content includes heterogeneous reactions that occur at or in the vicinity of cells or vascular structures under applied laminar flow and transport across cell membranes and within tissues.

Lecture: 3 Lab: 0 Credits: 3
BME 585
Computational Models of the Human Cardiovascular System

This course will focus on the use of computational fluid dynamics for the modeling and analysis of the human cardiovascular system. The course will cover both computational methods for fluid dynamics and biomedical aspects of the human cardiovascular system. Computer models for the simulation and analysis of hemodynamic phenomena will be developed. Requires an Introductory fluid dynamics.

Lecture: 3 Lab: 0 Credits: 3
BME 591
Research and Thesis for Master of Science Degree

Research and thesis for master of science degree students. Instructor permission required.

Credit: Variable
BME 594
Special Projects

Special projects.

Credit: Variable
BME 595
Seminar in Biomedical Engineering

Current research and development topics in biomedical engineering as presented by outside speakers, faculty and advanced students.

Lecture: 0 Lab: 0 Credits: 3
BME 597
Special Problems

Special problems.

Credit: Variable
BME 691
Research and Thesis PHD

Research and Thesis for PhD degree. (variable credit)

Credit: Variable