CAE 100
Introduction to Engineering Drawing and Design
Introduction to engineering graphics as a problem-solving tool. Basic traditional techniques of orthographic projection, multi-view, pictorial, auxiliary views, dimensioning and tolerance, sectioning, detail drawing. Use of ANSI standards; applications in civil and architectural engineering.
Lecture: 1 Lab: 2 Credits: 2
Satisfies: Communications (C)

CAE 101
Introduction to AutoCAD Drawing and Design
A continuation of CAE 100. Use of PC-based CAD (Computer-Aided Drawing and Design) software for presentation and problem solving in civil and architectural engineering applications. Introduction to basic principles of design.
Prerequisite(s): CAE 100
Lecture: 1 Lab: 2 Credits: 2
Satisfies: Communications (C)

CAE 105
Geodetic Science
Measurement of distances and angles. Theory of errors. Study of leveling, traversing, topographic mapping, route surveying, earthwork computation, photometry, and boundary surveys. Practice in the use of tapes, levels, total stations, and PC-based methodology.
Prerequisite(s): CAE 100*, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 2 Lab: 3 Credits: 3

CAE 110
Professional Practice I
This course is an introduction to the engineering profession. The content and delivery have been designed to challenge the student’s perspective of oneself and thus make the student a better engineer. The class focus is on developing the skills to become a professional learner and a successful student, increasing team learning skills, self-reflection, enhancing ethical perception and decision making abilities, and understanding the responsibilities as an engineer. In simple terms, the student will begin to “act as an engineer acts.”
Lecture: 0 Lab: 2 Credits: 1

CAE 111
Professional Practice II
This course continues the introduction to the engineering profession with further studies of team learning, specializations in engineering, enhancing ethical perception and decision making abilities, and understanding the responsibilities as an engineer. The course also looks deeply at the need for continuous innovation by studying and practicing the entrepreneurial mindset needed to create value for oneself as the student, for one’s company, and for society. In simple terms, the student will begin to “act as an engineer acts” and “think like an entrepreneur thinks.”
Lecture: 0 Lab: 2 Credits: 1

CAE 208
Thermal-Fluids Engineering I
Basic principles of thermodynamics applied to engineering systems using pure substances and mixtures as working fluids. Direct application of the laws of thermodynamics to analysis of closed and open systems, mass and energy flow. Extensive analysis of isentropic processes in cycles, analysis of gas mixtures and psychometrics in heating and cooling systems. Introduction to fluid mechanics and analysis of fluid statics problems.
Prerequisite(s): CHEM 124 and PHYS 123 and MATH 251* and CS 104-105, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

CAE 209
Thermal-Fluids Engineering II
Complete the development of fluid mechanics and introduce and develop heat and mass transfer analysis techniques. Description and analysis of fluid kinematics, energy and momentum equations applied to internal/external flow in building engineering systems. Development and application of convection, conduction and radiation to one-, two- and three-dimensional systems in steady state and transient regimes of operation as applied to building materials and geometries.
Prerequisite(s): MATH 252* and CAE 208, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

CAE 221
Engineering Geology
Geology and its relationship to civil engineering; minerals; rocks; soil formation; geologic structure; groundwater hydraulics; frost action in soils, landslides, shoreline erosion, bluff instability; earthquakes; air photo interpretation, soil and rock mechanics in relation to engineering geology; subsurface exploration; dams, reservoirs, tunnels; case-history illustrations.
Lecture: 2 Lab: 2 Credits: 1

CAE 286
Theory and Concept of Structural Mechanics
Prerequisite(s): PHYS 123 and MATH 152
Lecture: 3 Lab: 0 Credits: 3

CAE 287
Mechanics of Structural Materials
The concepts of deformation, strain, and stress. Application of free body diagram in shear force and bending moment diagram. Elementary bending theory, normal and shear stresses in beams, and beam deflection. Axially loaded members and Euler buckling theory. Plane stress and strain, Mohr’s circle, and torsion of circular sections. Combined loading.
Prerequisite(s): CAE 286 or MMAE 200
Lecture: 3 Lab: 0 Credits: 3
CAE 302
Fluid Mechanics and Hydraulics
Fundamental concepts; fluid statics; properties of fluid in motion; fluid flows through orifices, weirs and venturi meters; laminar and turbulent flow in closed conduits; flow in open channels; turbo machinery; measurement in fluid mechanics and hydraulics.
Prerequisite(s): MATH 252
Lecture: 3 Lab: 0 Credits: 3

CAE 303
Structural Design I
Design loads, factors of safety; load and resistance factors for steel structures. Experimental and analytical study of steel materials subjected to various states of stress. Failure theories, yield and post-yield criteria are treated. Fatigue and fracture mechanics phenomena are related to design practice. The design of tension member, beams, and columns in steel.
Prerequisite(s): MMAE 202 or CAE 287
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)

CAE 304
Structural Analysis I
Prerequisite(s): MATH 252 and (MMAE 202 or CAE 287)
Lecture: 2 Lab: 2 Credits: 3

CAE 307
Structural Design II
Prerequisite(s): CAE 315* and CAE 304, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 2 Lab: 3 Credits: 3
Satisfies: Communications (C), CAE Design Course (D)

CAE 312
Engineering Systems Analysis
Systems concept process, interest rate, present and future worth values, evaluation of alternatives, and elements of microeconomics. Theory of probability, laws of probabilities, random variables and distribution functions, functions of random variables, statistical estimations of data, mean and standard deviation, correlation, and regression analysis.
Prerequisite(s): MATH 251
Lecture: 3 Lab: 0 Credits: 3
Satisfies: Communications (C)

CAE 315
Materials of Construction
Physical principles of elastic and plastic deformation of construction. Mechanical testing methods including tensile, compressive, toughness, creep and fatigue. Properties of concrete, wood, iron and steel and other construction materials. The emphasis is on concepts from solid mechanics which explain the behavior of materials to the extent needed in the design of load-bearing structures.
Prerequisite(s): MMAE 202 or CAE 287
Lecture: 2 Lab: 3 Credits: 3
Satisfies: Communications (C)

CAE 323
Introduction to Geotechnical Engineering
Physical and mechanical properties of soil; elementary principles of soil identification and testing. Principles of soil permeability and seepage, consolidation, failure theories, earth pressures, and bearing capacity. Laboratory included.
Prerequisite(s): (CAE 209 or CAE 302) and (CAE 287 or MMAE 202)
Lecture: 2 Lab: 3 Credits: 3
Satisfies: Communications (C)

CAE 331
Building Science
Study of the physical interaction of climate (humidity, temperature, wind, sun, rain, snow, etc.) and buildings. Topics include psychrometrics, indoor air quality, indoor thermal comfort, heat transfer, air infiltration, solar insolation, and heating and cooling load calculation.
Prerequisite(s): CAE 209 or MMAE 322 or CHE 302
Lecture: 3 Lab: 0 Credits: 3

CAE 383
Electrical and Electronic Circuits
Prerequisite(s): MATH 252 and PHYS 221
Lecture: 2 Lab: 2 Credits: 3

CAE 401
Hydraulics, Hydrology, and Their Applications
Prerequisite(s): MATH 252*, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 2 Lab: 3 Credits: 3

CAE 408
Bridge and Structural Design
Design of modern bridges, bridge design requirements, LRFD approach, seismic and wind effects, fatigue in bridges, support design.
Prerequisite(s): CAE 431*, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)
CAE 410
Introduction to Wind and Earthquake Engineering
Kinematics of Particles, Newton's laws of motion, energy and momentum. Kinematics of rigid bodies. Fundamentals of free, forced, and transient vibration of single and multi-degree of freedom structures. Analysis and design of structures for wind and earthquake loadings. Building code requirements. Instructor's consent may be granted to students who do not meet the prerequisite.
Prerequisite(s): CAE 411*, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

CAE 411
Structural Analysis II
The analysis of statically indeterminate frames. Application of classical methods including superposition, slope deflection, and moment distribution. Introduction to the direct stiffness method and computer analysis of structures.
Prerequisite(s): CAE 304
Lecture: 3 Lab: 0 Credits: 3

CAE 412
Traffic Engineering Studies and Design
Basic traffic engineering studies including traffic volume, speed, accident, and parking studies. Capacity and analysis for various traffic facilities. Design of traffic control devices.
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)

CAE 415
Pavement Design, Construction and Maintenance
Pavement types, stresses in flexible and rigid pavements, vehicle pavement interaction. Mathematical models for pavement systems, sub grade support, design of flexible and rigid pavements. Construction procedure, drainage considerations, environmental effects. Rehabilitation and maintenance of pavements.
Prerequisite(s): CAE 323
Lecture: 3 Lab: 3 Credits: 4

CAE 416
Facility Design of Transportation Systems
Design and analysis of facilities of transportation systems. Integration of select transportation components and their interrelationships. Design of specific facilities: guide ways, terminals, and other elements for railroads, airports, and harbors.
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)

CAE 417
Railroad Engineering and Design
Lecture: 3 Lab: 0 Credits: 3
Satisfies: Communications (C), CAE Design Course (D)

CAE 419
Introduction to Transportation Engineering and Design
Highway functions, design controls and criteria, element of design, cross-section elements, local roads and streets, at-grade intersections, grade separation and interchanges, highway capacity analysis, and introduction to pavement management.
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)

CAE 421
Risk Assessment Engineering
Description and concept of risk, relationship between the likelihood of loss and the impact of loss, engineering hazards assessment and risk identification and evaluation using fault tree analysis, failure mode and effect analysis, etc., risk analyses applications with practical statistics.
Lecture: 3 Lab: 0 Credits: 3

CAE 422
Sprinklers, Standpipes, Fire Pumps, Special Suppression, and Detection Systems
Review and introduction to fluid dynamics applied to sprinklers, standpipes, fire pumps, special suppression systems; hydraulic design criteria and procedures for sprinklers requirements, standpipes, fire pumps, special suppression systems, and detection and alarm systems using nationally recognized design (National Fire Protection Association) standards, water supply requirement systems and distributions.
Prerequisite(s): CAE 209 or CAE 302
Lecture: 3 Lab: 0 Credits: 3

CAE 424
Introduction to Fire Dynamics
Introduction to fire, physics and chemistry, and mass and heat transfer principles, fire fluid mechanic fundamentals, fundamentals and requirements of the burning of materials (gases, liquids, and solids), fire phenomena in enclosures such as pre-flashover and post-flashover.
Prerequisite(s): CAE 209
Lecture: 3 Lab: 0 Credits: 3

CAE 425
Fire Protection and Life Safety in Building Design
Fundamentals of building design for fire and life safety. Emphasis on a systematic design approach. Basic considerations of building codes, fire loading, fire resistance, exit design, protective systems, and other fire protection systems.
Lecture: 3 Lab: 0 Credits: 3

CAE 430
Probability Concepts in Civil Engineering Design
Introduction to probability, modeling, and identification of nondeterministic problems in civil engineering. Development of stochastic concepts and simulation models and their relevance to design and decision problems in various areas of civil engineering.
Prerequisite(s): MATH 252
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)
CAE 431
Steel Design
Design of steel beams, plate girders, and beam columns. Bolted and welded connections. Design of typical frame systems.
Prerequisite(s): CAE 303 and CAE 304 and CAE 315*, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)

CAE 432
Concrete and Foundation Design
Design of reinforced concrete building frames and continuous structures. Design of girders, slabs, columns, foundations, and retaining walls.
Prerequisite(s): CAE 307
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)

CAE 433
Repair of Existing Building Structures
Building repair and retrofit issues are discussed. Specific requirements of a building for repair and/or reconstruction are emphasized. Methods of assessing building conditions, including forensic structural engineering are covered. Repair and strengthening methods based on types of materials (steel, concrete, masonry, timber), occupancy and function (residential, commercial), and building values are covered along with demonstration case studies and illustrative examples.
Prerequisite(s): CAE 432 and CAE 431
Lecture: 3 Lab: 0 Credits: 3

CAE 435
Experimental Analysis of Structures
The analysis of structures (prototypes) with the aid of models constructed from metal, wood, plastics, and other materials. Geometrical, mathematical, demonstration, graphical and direct and indirect models will be treated. Comparisons of experimental results with results from computer models will be made. Similitude and the theory of models will be treated. Individual and group project work will be emphasized.
Prerequisite(s): CAE 304 and CAE 411
Lecture: 2 Lab: 2 Credits: 3

CAE 436
Design of Masonry and Timber Structures
Design of unreinforced and reinforced masonry structural elements and structures. Serviceability and ultimate capacity design. Seismic response, resistance, and design. Design of wood columns and bending members. Mechanical fasteners and connectors. Instructor’s consent may be granted to students who do not meet the prerequisite.
Prerequisite(s): CAE 307
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)

CAE 437
Homeland Security Concerns in Engineering Systems
Review of blast effects produced by solid phase weapons and their effects on structures and people. Estimation of the risk of threats to security of public and private systems and facilities. Review of simplified structural methods for the analysis and design of structures to meet homeland security concerns and procedures to minimize casualties. Analysis of post-attack fires and how to prevent them. Examination of potential risk to security of infrastructure systems. Development of contingency plans to include evacuation preparedness at time of emergency.
Lecture: 3 Lab: 0 Credits: 3

CAE 439
Introduction to Geographic Information Systems
Geographic information system (GIS) technology allows databases which display and query information in new ways. This course will teach general GIS and GPS skills and concepts, useful to students and practitioners in a variety of disciplines. Students will complete a final GIS project relevant to their field of study. This hands-on class will use ESRI’s Arc View and Spatial Analyst products, as well as Trimble GeoExplorer GPS units.
Lecture: 3 Lab: 0 Credits: 3

CAE 457
Geotechnical Foundation Design
Methods of subsoil exploration. Study of types and methods of design and construction of foundations for structures, including single and combined footings, mats, piles, caissons, retaining walls, and underpinning. Drainage and stabilization.
Prerequisite(s): CAE 302 and CAE 323
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)

CAE 461
Plumbing and Fire Protection Design
Study of plumbing systems, water supply, and venting systems. Study of fire protection systems for buildings including pipe sizing, pumps, sprinklers, gravity and pressure vessels, and controls.
Prerequisite(s): CAE 302 or CAE 209 or MMAE 313
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)

CAE 463
Building Enclosure Design
Design of building exteriors, including the control of heat flow, air and moisture penetration, building movements, and deterioration. Study of the principle of rain screen walls and of energy conserving designs. Analytical techniques and building codes are discussed through case studies and design projects.
Prerequisite(s): CAE 331
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)
CAE 464
HVAC Systems Design
Study of the fundamental principles and engineering procedures for the design of heating, ventilating, and air conditioning systems; HVAC system characteristics; system and equipment selection; duct design and layout. Attention is given to energy conservation techniques and computer applications.
Prerequisite(s): CAE 331 or MMAE 322 or CAE 513 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)

CAE 465
Building Energy Conservation Technologies
Identification of the optimal energy performance achievable with various types of buildings and service systems. Reduction of infiltration. Control systems and strategies to achieve optimal energy performance. Effective utilization of daylight, heat pumps, passive and active solar heaters, heat storage and heat pipes in new and old buildings.
Prerequisite(s): CAE 331 or CAE 531
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)

CAE 466
Building Electrical Systems Design
Study of the analysis and design of electrical systems in buildings utilizing the National Electric Code. Topics include AC, DC, single-phase and three-phase circuits, transients, branch circuits, panel boards, system sizing, fault calculations and overcurrent protection design. Also studies the design and specification of emergency power backup and alternative power systems.
Prerequisite(s): CAE 383 or (ECE 216 and ECE 215)
Lecture: 3 Lab: 0 Credits: 3

CAE 467
Lighting Systems Design
An intensive study of the calculation techniques and qualitative aspects of good luminous design. Topics covered include: photometric quantities and color theory, visual perception, standards, daylight and artificial illumination systems, radiative transfer, fixture and lamp characteristics, control devices, and energy conservation techniques. Design problems, field measurements, computer, and other models will be used to explore major topics.
Lecture: 3 Lab: 0 Credits: 3

CAE 468
Architectural Design
Architectural Design is the first of a two-part sequence of architectural design and planning for architectural engineers. Students learn the basic theory and practice of the architectural design process from the architect's perspective. Topics include the logical process of architectural design development, integration of code requirement, design approach, and architectural presentation techniques taught through lecture and lab instruction.
Lecture: 2 Lab: 2 Credits: 3

CAE 470
Construction Methods and Cost Estimating
The role of estimating in construction contract administration. Types of estimates. Unit costs and production rates; job costs. Preparing bid for complete building project using manual methods and the CSI format; checking quantity take-off and cost estimating in selected divisions using a computer package.
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)

CAE 471
Construction Planning and Scheduling
Lecture: 3 Lab: 0 Credits: 3
Satisfies: Communications (C), CAE Design Course (D)

CAE 472
Construction Site Operation
Lecture: 3 Lab: 0 Credits: 3

CAE 473
Construction Contract Administration
Lecture: 3 Lab: 0 Credits: 3

CAE 482
Hydraulic Design of Open Channel Systems
Uniform flow design; backwater profiles in natural streams; gradually varied flow practical problems; spatially varied flow; flow through nonprismatic and nonlinear channels; gradually varied unsteady flow; rapidly varied unsteady flow; flood routing; numerical solutions of open channels.
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)

CAE 486
Soil and Site Improvement
The role of estimating in construction contract administration. Types of estimates. Unit costs and production rates; job costs. Preparing bid for complete building project using manual methods and the CSI format; checking quantity take-off and cost estimating in selected divisions using a computer package.
Lecture: 2 Lab: 2 Credits: 3
Satisfies: CAE Design Course (D)
CAE 491
Undergraduate Research
Special research problems in civil and architectural engineering under individual supervision of instructor. Seminar presentation is required. (Credit: Variable; maximum 4 credit hours). Prerequisite: Senior standing, minimum GPA of 3.0, and consent of the instructor. Credit: Variable

CAE 495
Capstone Senior Design
A group project requiring the integration of multiple engineering disciplines to satisfy client requirements for a real engineering project. Students will be required to demonstrate mastery in the application of numerous engineering disciplines to a project, work as a member of an integrated engineering team, and demonstrate the ability to understand and communicate engineering solutions to a client verbally, visually, and in written form. Course is required to satisfy ABET program objectives. Lecture: 2 Lab: 3 Credits: 3 Satisfies: CAE Design Course (D)

CAE 497
Special Project
Special design project under individual supervision of instructor. Prerequisite: Senior standing, minimum GPA of 3.0, and consent of instructor. Credit: Variable

CAE 502
Acoustics and Lighting

CAE 503
Advanced Structural Analysis
Introduction to the mechanics of solids. Energy methods and the calculus of variations. Ritz/Galerkin approximation methods. Introductory discussions on elastic stability and plate analyses. Prerequisite(s): CAE 411 with min. grade of C or MMAE 501* with min. grade of C and CAE 514* with min. grade of C. An asterisk (*) designates a course which may be taken concurrently. Lecture: 3 Lab: 0 Credits: 3

CAE 504
Seismic Retrofit and Earthquake Hazard Reduction

CAE 506
Building Envelope Rehabilitation
Repair and rehabilitation of existing building exterior envelopes. The course will include problem identification, investigative techniques, repair methods, preparation of remedial design documents and general management of rehabilitation projects. Types of constructions include buildings, exterior walls, facades, cladding, roofing, plazas, porches, fire escapes, and others. Lecture: 3 Lab: 0 Credits: 3

CAE 508
Advanced Bridge Engineering
Specifications for bridge design and evaluation. Advanced bridge design and evaluation topics such as design load envelope, seismic load design, bridge condition rating, bridge load rating, and steel bridge fatigue evaluation. Bridge management systems. Life cycle analyses. Use of high performance materials in bridge engineering. Prerequisite(s): CAE 408 with min. grade of C Lecture: 3 Lab: 0 Credits: 3

CAE 510
Dynamics of Fire
Introduction to fire, physics and chemistry, and mass and heat transfer principles, fire fluid mechanic fundamentals, fundamentals and requirements of the burning of materials (gases, liquids, & solids), fire phenomena in enclosures such as pre-flashover and post-flashover. Lecture: 3 Lab: 0 Credits: 3

CAE 511
Fire Protection of Buildings
Fundamentals of building design for fire and life safety. Emphasis on a systematic design approach. Basic considerations of building codes, fire loading, fire resistance, exit design, protective systems & other fire protection systems. For architects, and engineers not majoring in fire protection and safety engineering. Lecture: 3 Lab: 0 Credits: 3

CAE 513
Building Science
Study of the physical interaction of climate (humidity, temperature, wind, sun, rain, snow, etc.) and buildings. Topics include psychrometrics, indoor air quality, indoor thermal comfort, heat transfer, air infiltration, solar insolation, and heating and cooling load calculation. Lecture: 3 Lab: 0 Credits: 3
CAE 514
Mathematical Methods for Structural Engineering
Lecture: 3 Lab: 0 Credits: 3

CAE 515
Building Energy Modeling
Building energy modeling (BEM) is the core of building information modeling (BIM) and sustainable design which are changing the way of architectural design and engineering. This course builds essential knowledge of building performance simulation and provides necessary background to use a building energy simulation software tool. Proven methods for using BEM to deal with such essential building performance and sustainability issues will be presented by using real world examples placing particular emphasis on using BEM-enabled quantitative analysis to evaluate design alternatives for the whole life cycle of a building. Complete with coverage of integrated design and lean construction requirements, this is a valuable course for architects, engineers, and construction professionals involved in energy performance modeling for buildings.
Prerequisite(s): CAE 513 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CAE 518
Advanced Reinforced Concrete
Mechanical properties of hardened concrete, including creep phenomena. Ultimate strength of columns, beams and beam-columns. Introduction to limit analysis of frames and yield-line analysis of plates.
Prerequisite(s): CAE 432* with min. grade of C, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

CAE 520
Buckling of Structures
Prerequisite(s): CAE 431 with min. grade of C and CAE 411 with min. grade of C
Lecture: 4 Lab: 0 Credits: 4

CAE 522
Structural Model Analysis
Prerequisite(s): CAE 503 with min. grade of C
Lecture: 2 Lab: 2 Credits: 4

CAE 523
Statistical Analysis of Engineering Data
Descriptive statistics and graphs, probability distribution, random sampling, independence, significance tests, design of experiments, regression, time series analysis, statistical process control, and introduction to multivariate analysis.
Lecture: 3 Lab: 0 Credits: 3

CAE 524
Building Enclosure Design
Design of building exteriors, including the control of heat flow, air and moisture penetration, building movements, and deterioration. Study of the principle of rain screen walls and of energy conserving designs. Analytical techniques and building codes are discussed through case studies and design projects.
Prerequisite(s): CAE 513 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CAE 525
Advanced Steel and Composite Structures
Prerequisite(s): CAE 431* with min. grade of C, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 4 Lab: 0 Credits: 4

CAE 526
Energy Conservation Design in Buildings
Identification of the optimal energy performance achievable with various types of buildings and service systems. Reduction of infiltration. Control systems and strategies to achieve optimal energy performance. Effective utilization of daylight, heat pumps, passive and active solar heaters, heat storage and heat pipes in new and old buildings.
Prerequisite(s): CAE 331 with min. grade of C or CAE 513 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3
CAE 527
Control of Building Environmental Systems
Prerequisite(s): CAE 513 with min. grade of C or CAE 531 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CAE 529
Dynamics of Structures
Prerequisite(s): CAE 411 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CAE 530
Finite Element Method of Analysis
Advanced and special topics in finite element analysis such as finite element-boundary element method, plates, and shell analysis using finite elements.
Prerequisite(s): CAE 411 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CAE 532
Analysis of Plates and Shells
Exact and approximate stress analysis of elastic, isotropic plates of various shapes acted upon by forces in their plane, as well as transverse forces. Stability of plates with various edge conditions, orthotropic plates, elastically supported plates and simple cylinders. Approximate methods such as finite differences, finite elements and the methods of Ritz and Galerkin.
Prerequisite(s): CAE 503 with min. grade of C
Lecture: 4 Lab: 0 Credits: 4

CAE 533
Theory and Analysis of Thin Shells
Differential geometry of surfaces. Elastic theory of general shells with nonorthogonal curvilinear coordinates. Specialization to cylindrical shells, shells of revolution and translational shells. Exact and approximate solutions applied to the bending membrane theories of thin shells. Approximate methods including finite differences, finite elements and methods associated with Ritz, Galerkin, Puchler and Gaekler.
Prerequisite(s): CAE 503 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CAE 534
Computational Techniques in Finite Element Analysis
Survey of numerical methods as applied to FEM software. Database management, equation solvers, eigen value routines and schemes for direct integration (both implicit/explicit), all as employed in the development of a finite element program. Topics covered also include band and front minimizers, static and dynamic substructuring via super elements and sensitivity studies. Same as MAE 538.
Prerequisite(s): CAE 530* with min. grade of C, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

CAE 535
Nonlinear Finite Element Analysis
FEM as applied to nonlinear problems. Contact problems, the mechanics of large deformation, full and updated Lagrange formulations, review of plasticity, solution algorithms, Eulerian approaches, application to FEM to limit analysis. Same as MAE 539.
Prerequisite(s): CAE 442 with min. grade of C or MMAE 501 with min. grade of C or CAE 514 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CAE 537
Homeland Security Concerns in Building Designs
Review of blast effects produced by solid phase weapons and their effects on structures and people. Estimation of the risk of a terrorist attack and the corresponding threat. Review of simplified methods for the analysis and design of structures to meet homeland security concerns and procedures to minimize casualties. Analysis of post event fires and how to prevent them. Review of security measures to minimize the effects of blast on buildings and people.
Lecture: 3 Lab: 0 Credits: 3

CAE 539
Introduction to Geographic Information Systems
Geographic information system (GIS) technology allows users to combine tabular information with maps, creating powerful spatial databases which display and query information in new ways. This course will teach general GIS and GPS skills and concepts, useful to students and practitioners in a variety of disciplines. Students will complete a final GIS project relevant to their field of study. This hands-on class will use ESRI's ArcView and Spatial Analyst products, as well as Trimble GeoExplorer GPS units.
Lecture: 3 Lab: 0 Credits: 3

CAE 540
Asphalt and Concrete Mix Design
Types of asphalt and physical properties of asphalt. Types of mixes: dense graded, open graded, base courses, and maintenance mixes. Types of pavement structures and hot mix asphalt placement. Aggregate physical properties, tests, and blending. Maintenance and rehabilitation materials. Mixture design procedures, including Marshall and Hveem procedures, and weight-volume relationships. Evaluation of mixture properties, engineering property's importance to performance, resilient modulus, fatigue, and creep testing, and thermal cracking properties. Laboratory included.
Lecture: 2 Lab: 3 Credits: 3
CAE 541
Pavement Evaluation and Management
Pavement management systems (PMS) concepts, network definition, condition survey, pavement condition index (PCI), non-destructive deflection testing (NDT), measurement of roughness and skid resistance, microcrown PMS, PMS implementation, project and network-level management, maintenance alternatives, development of annual and long-range work plans.
Lecture: 3 Lab: 0 Credits: 3

CAE 543
Demand Models for Urban Transportation
Fundamental theory of supply and demand, transportation economics, network equilibrium, land use and transportation equilibrium. Demand models: trip generation, geographical distribution, mode split, route assignment, the direct-demand model and disaggregate-behavioral-demand models. Special properties of models. Relationships among models.
Lecture: 3 Lab: 0 Credits: 3

CAE 544
Urban Transportation Planning
Exploration of the goals of urban transportation. Program planning in relating transportation technology to social, economic, and environmental systems. Systems analysis in forecasting urban land use and travel demand and evaluating alternatives in transportation planning to reach a balance between demand and supply.
Lecture: 4 Lab: 0 Credits: 4

CAE 545
Traffic Operations and Flow Theory
Studies of space and time distribution of speed and other traffic characteristics in the transportation network. Macro, micro, and mesoscopic traffic flow theories. Simulation in traffic networks. Application of flow theories to traffic control and operations.
Lecture: 3 Lab: 0 Credits: 3

CAE 546
Public Transportation Systems
Lecture: 3 Lab: 0 Credits: 3

CAE 547
Advanced Traffic Engineering
Data collection, statistical analysis, and interpretation of traffic information. Advanced traffic engineering topics such as signaling, street-and-highway capacity analysis, and highway safety research.
Lecture: 3 Lab: 0 Credits: 3

CAE 548
Transportation Systems Management
Transportation as a system. Problems of traffic congestion, land use/transportation intersection; intersection control; freeway and arterial incident management; safety considerations; evaluation of strategies; case studies.
Lecture: 3 Lab: 0 Credits: 3

CAE 549
Transportation Economics, Development and Policy
Application of managerial, micro- and macroeconomic concepts to transportation systems. Investment and impact analysis. Transport policy as it relates to social, economic and environmental issues. Legislative actions affecting transport issues.
Lecture: 3 Lab: 0 Credits: 3

CAE 550
Applied Building Energy Modeling
This course introduces students to building energy modeling software and techniques that are widely used in industry applications. The course is practice-oriented and builds upon building energy modeling methods as they are practiced in engineering offices (using IES software). The course centers on the two most common types of energy models in practice: (1) models for LEED and code compliance, and (2) parametric models for evaluating energy conservation measures. During the first half of the course, students will learn modeling methods and assumptions to create an energy model of an actual building project for the LEED Energy and Atmosphere credit with all supporting documents required for LEED submission. In the second half of the course, students will learn to analyze energy conservation measures using parametric energy models. The course will also focus on advanced energy modeling topics, such as modeling HVAC systems and controls, passive techniques, composite fenestration, thermal bridges, thermal mass, and others. At the end of the course, students will have two complete energy models that they can use in their portfolio.
Prerequisite(s): CAE 513 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CAE 551
Prestressed Concrete
Theory and design of prestressed concrete members and structure. Applications to both simple and continuous girder and frames subjected to stationary or moving loads. Prestressed cylindrical shells.
Prerequisite(s): CAE 432* with min. grade of C, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

CAE 553
Measurement and Instrumentation in Architectural Engineering
Hands-on experience with energy and indoor air quality measurements in buildings including experimental design, data analysis, and experimental statistics. Measurements and techniques covered include: thermal performance (e.g., thermal conductivity and resistance, heat flux, and temperature); fluid flows and HVAC characteristics (e.g., velocity, pressure, and airflow); energy performance (e.g., current, voltage, and power draw); whole building diagnostics (e.g., blower door and duct blaster); and indoor air quality (e.g., tracer gas techniques for air exchange, particle measurements, and gas measurements). Course combines lectures and field measurements in buildings on campus.
Prerequisite(s): CAE 513 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3
Lecture: 3 Lab: 0 Credits: 3

CAE 556
Net Zero Energy Home Design Competition I
This is a project-based course in which students will compete in the Department of Energy's annual Race to Zero home design competition. The goal is for an interdisciplinary team of students to design and provide full documentation for a home that meets the Department of Energy's Zero Energy Ready Home Requirements. Teams are expected to effectively and affordably integrate principles of building science, construction engineering and management, economic analysis, and architectural design in an integrated design process. Teams will be required to submit full sets of plans, drawings, renderings, construction details, and analyses for energy efficiency, costs, and affordability. The competition is designed to provide the next generation of architects, engineers, construction managers, and entrepreneurs with skills and experience to start careers in clean energy and generate creative solutions to real-world problems. CAE 556 is the first course in a two-course series. CAE 556 focuses on aspects of the building design. Priority is given to Architectural Engineering and Architecture majors.

Lecture: 3 Lab: 0 Credits: 3

CAE 557
Net Zero Energy Home Design Competition II
This is a project-based course in which students will compete in the Department of Energy's annual Race to Zero home design competition. The goal is for an interdisciplinary team of students to design and provide full documentation for a home that meets the Department of Energy's Zero Energy Ready Home Requirements. Teams are expected to effectively and affordably integrate principles of building science, construction engineering and management, economic analysis, and architectural design in an integrated design process. Teams will be required to submit full sets of plans, drawings, renderings, construction details, and analyses for energy efficiency, costs, and affordability. The competition is designed to provide the next generation of architects, engineers, construction managers, and entrepreneurs with skills and experience to start careers in clean energy and generate creative solutions to real-world problems. CAE 557 is the second course of a two-course series. CAE 557 focuses on the final project reporting and submission. Priority is given to Architectural Engineering and Architecture majors.

Prerequisite(s): CAE 556 with min. grade of C

Lecture: 3 Lab: 0 Credits: 3
CAE 565
Rock Mechanics and Tunneling
Rock classification for engineering purposes, mechanical behavior of rocks, in situ stresses in rock, stresses around underground openings, rock slope engineering, design of underground structures, design of deep support excavation and tunnels, primary and secondary linings of tunnels, mined shafts, instrumentation.
Prerequisite(s): CAE 457 with min. grade of C
Lecture: 4 Lab: 0 Credits: 4

CAE 566
Earthquake Engineering and Soil Dynamics
Earthquakes and their intensity, influence of group motion, review of I-DOF and M-DOF systems, wave propagation theories, vibration due to blast and shock waves, design earthquake motion, dynamic properties of soils, soil liquefaction, bearing capacity during earthquakes and design of machine foundations, isolation of foundations, pile foundation, and dynamic analysis, earth pressure during earthquakes on retaining structures and embankment.
Prerequisite(s): CAE 323 with min. grade of C and CAE 420 with min. grade of C
Lecture: 4 Lab: 0 Credits: 4

CAE 568
Transportation Asset Management
Processes and techniques for managing the preservation and expansion of highway transportation facilities such as pavements, bridges, and traffic control and safety hardware; system usage concerning mobility, safety and security, energy consumption, and vehicle emissions; and economic development impacts. Five component management systems are first examined: pavements, bridges, traffic control and safety hardware, roadway maintenance, safety, and congestion. Finally, the methodology for overall transportation asset management is discussed. The primary emphasis is on data collection, database management, performance modeling, needs assessment, project evaluation, project selection, program development strategies, risk and uncertainty modeling, and institutional issues.
Lecture: 3 Lab: 0 Credits: 3

CAE 570
Legal Issues in Civil Engineering
This course introduces students to the legal aspects of engineering and construction, contract documents, and contract clauses. Upon completion of this course, students will be able to do the following: (1) identify the elements of contract formation; (2) interpret contract clauses; (3) explain the rights and duties of the parties involved in design and construction; and (4) evaluate changes and their root causes. Students will also be able to objectively identify and analyze legal liabilities and the expected professional standard of architects, engineers, and contractors.
Lecture: 3 Lab: 0 Credits: 3

CAE 571
Lean Construction and Control
This course introduces students to lean principles and the lean project delivery system (LPDS) applied to the construction industry. Lean construction and lean project delivery embrace concepts and techniques originally conceived in the automobile manufacturing industry and adopted by the construction industry. In the manufacturing sector, lean production has revolutionized product manufacturing, resulting in significant gains in plant productivity, reliability, and reductions in defects. Specific concepts that will be covered in this course include Plan-Do-Check-Act continuous improvement, A3 reporting, value stream mapping, pull systems and pull planning, kanban, 5S, standardization, and the Choosing by Advantages Decisionmaking System.
Lecture: 3 Lab: 0 Credits: 3

CAE 572
Construction Cost Accounting and Control
Lecture: 3 Lab: 0 Credits: 3

CAE 573
Construction Management with Building Information Modeling
Fundamentals and practical use of information technologies in the construction industry; basic concepts of building information modeling (BIM); review of software and technology available for BIM; practical use of BIM including design and clash detection; impact of BIM on construction management functions; construction scheduling and sequencing using BIM; cost estimating using BIM; facility management with BIM; integrated approach to navigate BIM as a multi-disciplinary design, analysis, construction, and facility management technology; class exercise to create a BIM model and to use it in scheduling, sequencing, cost estimating, management, and simulation of a construction project.
Lecture: 3 Lab: 0 Credits: 3

CAE 574
Economic Decision Analysis in Civil Engineering
Basic economic concepts including interest calculations, economic comparison of alternatives, replacement decisions, depreciation and depletion, tax considerations, and sensitivity analysis. Evaluation of public projects, the effect of inflation, decision making under risk and/or uncertainty, economic decision models. Case studies from the construction industry.
Lecture: 3 Lab: 0 Credits: 3
CAE 575
Systems Analysis in Civil Engineering
Management and system concepts, linear programming, graphical methods, Simplex, two-phase Simplex, the transportation problem, the assignment problem, integer programming, and sensitivity analysis. System modeling by activity networks; maximal-low flow, longest-path and shortest-path analyses, flow graphs, decision-tree analysis, stochastic-network modeling, queuing systems, and analysis of inventory systems. Case studies from the construction industry.
Lecture: 3 Lab: 0 Credits: 3

CAE 577
Construction Equipment Management
Factors affecting the selection of construction equipment. Descriptions, operating methods, production rates, unit costs related to excavating equipment. Power shovels, draglines, clam shells, and trenching machines. Engineering fundamentals. Moving construction equipment, including trucks, wagons, scrapers, dozers, soil-stabilization and compaction equipment. Belt conveyors, compaction and drilling equipment, pile driving equipment, pumps and crushers.
Lecture: 3 Lab: 0 Credits: 3

CAE 578
Construction Claims Management
This course provides a basic explanation of construction contract claims by types such as delays, acceleration, and scope issues, the underlying legal theories of the contract construction and claims, elements required for each claims type defenses to the claim, prophylactic claims measures. The claims process within the contract and extra-contractual basis's for claims are examined. Resolution of claims by ADR techniques and the formal litigation process are explained. AIA, AGC, and federal claims provisions are described. In addition to construction contract claims other types of claims associated with construction projects are covered such as Surety bond claims and various insurance claims (CGL, Builder's Risk, workers comp, etc).
Prerequisite(s): CAE 473 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CAE 579
Real Estate Fundamentals for Engineers and Architects
The objective of this course is to introduce civil engineering students to the real estate process. Students will learn techniques and methodologies for evaluating real estate investment opportunities using engineering economic analysis principles. Students will use Time Value of Money analysis for evaluating real estate transactions, including how to carry out calculations using formulas, financial calculators, and spreadsheets. This course will help civil engineering students learn financial skills that can be applied to professional and personal investment decisions.
Lecture: 3 Lab: 0 Credits: 3

CAE 580
Intelligent Transportation Systems
The concept of intelligent transportation systems (ITS) involves the use of rapidly emerging information and communication technologies in mitigating congestion and attendant problems. A substantial amount of research and development activities have taken place over the last few decades. This course will provide an introduction to the various aspects of ITS and will focus on ITS planning, technology, big data analysis, and evaluation. In addition, such topics as deployment, financing, and management are also discussed. The course will include guest lectures and possibly field visits.
Lecture: 3 Lab: 0 Credits: 3

CAE 581
Algorithms in Transportation
Modeling and analysis of transportation network problems through the design, analysis, and implementation of algorithms. Emphasis on the use of quantitative and qualitative methods of operations research to model system performance. Covers fundamental data structures, complexity analysis, memory management, recursive programs, application of graph theory, and network analysis to transportation problems, analytical formulations, and solution algorithms for origin-destination estimation, static and dynamic traffic assignments, and transportation resource allocation.
Lecture: 3 Lab: 0 Credits: 3

CAE 582
Structural Wind and Earthquake Engineering
Introduction to nature of wind, aerodynamic wind-loading and design. Strong ground motion phenomenon. Investigation of the response of structures to dynamic and pseudo dynamic wind, earthquake, shock waves and other deterministic and probabilistic loadings. Design criteria for buildings and nuclear power stations, special topics in lifeline earthquake engineering.
Prerequisite(s): CAE 529 with min. grade of C
Lecture: 4 Lab: 0 Credits: 4

CAE 583
Performance-Based Structural and Seismic Design of Buildings and Bridges
This course covers performance-based structural and seismic design (PBSSD) for buildings and bridges. The course will begin with brief reviewing and critical discussion on conventional code-based seismic design followed by the development of the concept and applicability of this new alternative and advanced PBSSD. Computer methods in linear dynamic, nonlinear static, and dynamic analyses will be surveyed and discussed as primary tools in PBSSD. Ample case studies from real-world projects are carried out throughout the course. These case studies include the PBSSD of special structures, tall buildings, and those that building code-based design is not applicable.
Prerequisite(s): CAE 529 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3
CAE 584
Stormwater Management
Basic principles of storm water management; hydrology and
hydraulics of excess water; excess water management and design;
sewer system design and management, storm water detention
systems; flood plain system design; risk based design of drainage
systems; practical and case study problems.
Prerequisite(s): CAE 301 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CAE 586
Seismic Design of Building and Bridge Structures
The course covers six topics, as listed in the course outline, on
seismic design of steel and R/C building structures and bridges.
In addition to offer fundamentals and experiences in seismic
design through design examples, it is also assumed that structural
engineers who are preparing for their Structural Engineer License
Exam might find extremely helpful.
Prerequisite(s): CAE 431 with min. grade of C and CAE 432 with min.
grade of C
Lecture: 3 Lab: 0 Credits: 3

CAE 589
Groundwater Hydrology and Sampling
Groundwater geology and flow, response of ideal aquifer to
pumping. Chemical properties and principles including source of
contamination and estimation of saturated hydraulic conductivity.
Principles of exploration and sampling, methods of subsurface
explorations, groundwater observation techniques. Instructor
permission required.
Lecture: 3 Lab: 0 Credits: 3

CAE 590
Geotechnical Landfill Design and Maintenance
Regulatory and legal issues, site selection and assessment,
geotechnical-subsurface investigation, clay mineralogy and clay-
water-electrolyte systems, linear and leachate-control systems
design, stability of landfill slopes, cover design, construction and
operation, final use and remediation design.
Prerequisite(s): CAE 323 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CAE 591
Research and Thesis for M.S. Degree
Research and Thesis for M.S. Degree.
Credit: Variable

CAE 593
Civil Engineering Seminar
Reports on current research. Graduate students are expected to
register and attend.
Lecture: 0 Lab: 1 Credits: 0

CAE 594
Research Problems
Credit: Variable

CAE 597
Special Problems
Graduate course work in the problem subject matter. Subject
matter will vary with the interests and background of students and
instructor. Design or research problems may be assigned from the
areas of architectural, construction, geotechnical, geoenvironmental,
structural, or transportation engineering.
Credit: Variable

CAE 598
Special Topics
A special topic in civil or architectural engineering at the graduate
level.
Credit: Variable

CAE 599
Graduate Workshop
Graduate workshop.
Lecture: 0 Lab: 0 Credits: 0

CAE 691
Research and Thesis for Ph.D. Degree
Research and Thesis for Ph.D. degree.
Credit: Variable

CAE 724
Introduction to Acoustics
This short course provides a brief introduction to the fundamentals
of acoustics and the application to product noise prediction and
reduction. The first part focuses on fundamentals of acoustics and
noise generation. The second part of the course focuses on applied
noise control.
Lecture: 2 Lab: 0 Credits: 2