INDUSTRIAL TECHNOLOGY AND MANAGEMENT

3424 S. State St., Room 4001
Chicago, IL 60616
312.567.3650
appliedtech.iit.edu/industrial-technology-and-management

Director
Mazin Safar

Program Manager
Pamela Houser

Faculty with Research Interests
For more information regarding faculty visit the Department of Industrial Technology and Management website.

Industrial Technology and Management (INTM) programs provide students with a broad knowledge of industrial technologies and operational activities, and the managerial and communication skills required to effectively manage operations, personnel, and resources in a competitive, performance-oriented industrial environment. Emphasis is on the range of competencies required for an individual to successfully function in a management, supervisory, or staff position in industry, and their ability to provide practical solutions to complex situations.

The Master of Industrial Technology and Operations (MITO) degree allows students to pursue a program of study suited to their professional interests and career objectives. INTM courses focus on functional activities and managerial skills, utilization of current and emerging technologies, and the development of critical thinking and innovative problem-solving abilities. In-depth study of industry-specific topics is achieved through the completion of an industrial specialization, options for which include:

- Industrial Facilities (IF)
- Industrial Sustainability (ST)
- Manufacturing Technology (MT)
- Supply Chain Management (SCM)

The MITO program may be completed on a full-time or part-time basis. INTM courses generally meet one night a week to suit the schedules of working adults. Classes meet at Illinois Institute of Technology’s Mies Campus in Chicago, and may be taken online by students with time constraints or who are located elsewhere in the world.

Admission Requirements
Applicants must hold a four-year bachelor’s degree from an accredited institution. Students with a GPA of 3.0/4.0 can be admitted unconditionally. Students with a GPA of 2.5/4.0 can be admitted contingent upon their earning a GPA of 3.3 or better in the first three courses taken at the university. The GRE is not required for applicants who have completed a degree at a U.S. institution.

Applicants who have completed an undergraduate degree outside the U.S. must complete the GRE and submit scores with the admission application. Minimum required GRE scores are 2.5 for analytical writing and a combined score of 292 for the verbal and quantitative portions of the exam. Applicants from countries where English is not the primary language also must complete the TOEFL with a minimum score of 70 on the internet-based test (equivalent to 523 PBT) with no individual section scored below 15. IELTS scores are also accepted, with a minimum score of 5.5. Students with a TOEFL score between 70 and 89 or an IELTS score between 5.5 and 6.0 will be required to complete an English assessment test upon arrival at the university to identify need and placement in a remedial English course during the first term of study.

All applicants must submit a completed application form, the application fee, official transcripts (or certified copies) for all academic work at the college level, and a professional statement. International students must also submit financial support documentation verifying sufficient funds to cover degree studies and living expenses.

Prospective students who have previously obtained a M.S. or even a Ph.D. in highly technical subjects may be well served to pursue the MITO degree. These individuals are often technical experts who, once employed in industry, have found that they lack an understanding of industrial operations, applied technologies, and management skills. As a hybrid program covering both technology and management, the MITO curriculum enables such specialists to move into operations or management.

Degree Offered
- Master of Industrial Technology and Operations
Course Descriptions

INTM 502
Industrial Engineering Concepts and Applications
Beginning with productivity and productivity improvement, students learn Industrial Engineering concepts and are trained to apply them to optimize engineering and operational tasks. Topics covered include time and motion studies, work measurement, ergonomics, value stream engineering, and value stream mapping. Data envelopment analysis and analytical hierarchy process are implemented, using Excel to optimize operations. Plant location selection and layout are covered. Students learn to optimize project selection using ROI and other metrics and execute projects using Microsoft Project. An open source ERP system is used to illustrate MRP and other planning functions. The application of statistical methods, including hypothesis testing, to improve performance is also covered.
Lecture: 3 Lab: 0 Credits: 3

INTM 507
Construction Technology
Introduces the full range of technologies involved in construction of both new and modified facilities, including steel, concrete and timber construction as well as supporting specialties such as HVAC, electrical, plumbing, etc. The interactions between the various construction trades will be covered along with the role of the architects and engineers.
Lecture: 3 Lab: 0 Credits: 3

INTM 508
Cost Management
This course introduces accounting information used for decision-making within a business enterprise. Financial reporting, financial terminology, and the three major financial statements are reviewed. Product costing, short-term and long-term decision-making, budgeting, control of operations, and performance evaluations are covered as are cost-volume-profit relationships, relevant costs, flexible budgets, and standard costs.
Lecture: 3 Lab: 0 Credits: 3

INTM 509
Inventory Control
Fundamentals of inventory control including inventory classifications, i.e. raw materials, work-in-process (WIP) and finished goods. Topics include inventory record keeping, inventory turnover, the 80/20 (or ABC) approach, external and internal lead times, excess/obsolete inventory, and inventory controls. Material Resource Planning (MRP) are included.
Lecture: 3 Lab: 0 Credits: 3

INTM 511
Industrial Leadership
Supervision and management practices are key to all components and sectors of industry. People are the key resources and their effective use is critical to a successful operation. As companies move to become high performance organizations, traditional management tools and techniques have to be reviewed and reconsidered. Skills covered include motivation, developing consensus, conflict avoidance and negotiations. Group dynamics along with handling of individual workers is critical.
Lecture: 3 Lab: 0 Credits: 3

INTM 514
Topics in Industry
This course provides overview of multiple industrial sectors and the influences that are forcing change. All aspects of industry are considered: history of industry, inventory, supply chain, e-commerce, management, manufacturing, industrial facilities, resource management, electronics and chemical industries, alternate energies, marketing, entrepreneurship, computers as tools, and other specialty areas.
Lecture: 3 Lab: 0 Credits: 3

INTM 515
Advanced Project Management
This course covers project management in the PMP framework and provides a structured approach to managing projects using Microsoft Project and Excel. Coverage includes creation of key project management charts (Gantt, Pert, CPM, timelines and resource utilization), basic statistics used in estimating task times, critical path generation in Excel and Project, project cost justification in Excel, SPC and acceptance sampling for machine, project analysis via simulation, and management of personnel, teams subcontractors and vendors. Case studies are utilized to demonstrate core concepts and dynamic scheduling.
Lecture: 3 Lab: 0 Credits: 3

INTM 516
Integrated Facilities Management
Integrated Facilities Management involves understanding processes and tools needed to successfully manage building systems, functions, and personnel in any type of building, complex of buildings, or physical environment. Course covers topics in facilities management ranging from routine maintenance to complex systems interactions and financial decisions. Students learn to assess issues of safety, human comfort, sustainable use of resources, building and infrastructure life cycles, and company objectives and develop solutions based on studying real problems in facilities management organizations.
Lecture: 3 Lab: 0 Credits: 3

INTM 518
Industrial Risk Management
Each year industrial companies are affected by critical incidents which cause disruptions in operations and significant monetary losses due to repairs and/or lost revenue. Whether it is a small fire, an extended electrical outage or an incident of a more serious magnitude, all company stakeholders-from the board of directors to the employees to the customers—are impacted. The key to understanding the complexities of industrial resiliency lies in focusing on the issues of preparedness: prevention, mitigation and control. This course is designed to prepare the student for managing a critical incident, including understanding risk and business impact, emergency preparedness, contingency planning and damage control.
Lecture: 3 Lab: 0 Credits: 3
INTM 520
Applied Strategies for the Competitive Enterprise
Course covers the application of proven management principles and operational practices. Learn how high performance companies create a competitive advantage despite economic challenges and a transitional customer base. Factors covered include strategy deployment, financial analysis, new product development, quality, customer service, and attaining market leadership. Case studies illustrate variable impacts on business situations.
Lecture: 3 Lab: 0 Credits: 3

INTM 522
Modeling for Decision-Making
Management Information Systems (MIS) are utilized in all industrial sectors to manage, analyze, and optimize operational processes. This course examines the integration of MIS for a range of operational activities, including production scheduling, inventory control, purchasing, shipping, and invoicing. Students will be exposed to the theory of MIS by reviewing case studies and successful applications. Students learn how to build spreadsheet models for multiple business problems using linear programming (LP) and integer programming (IP) and perform regression analysis and basic time series forecasting. A variety of Microsoft Excel tools are introduced.
Lecture: 3 Lab: 0 Credits: 3

INTM 523
Sustainable Facilities Operations
Maintaining and managing buildings and facilities is a challenging, multifaceted occupation. Facilities are becoming smarter and greener as the goals of energy conservation and occupant comfort have shifted to include environmental responsibility. This course examines facility operations and management (O&M) related to sustainability and green technology, with an emphasis on the U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) requirements, rating system, and the process for properties to apply for certification as a resource-efficient operation.
Lecture: 3 Lab: 0 Credits: 3

INTM 530
Transportation
This course covers transportation practices and strategies for the 21st century. The role and importance of transportation in the economy and its relationship to the supply chain will be covered in detail. Transportation modes -- trucks, rail, air, and water -- will be examined for both domestic and global transportation. Costing and pricing strategies and issues will be discussed as well as security issues in domestic and international transportation.
Lecture: 3 Lab: 0 Credits: 3

INTM 531
Manufacturing Processes for Metals and Mechanical Systems
A broad range of manufacturing processes are studied including casting, forging, rolling, sheet metal processing, machining, joining, and non-traditional methods such as powder, EDM, and additive processes. Particular attention on interrelationships between manufacturing processes and properties developed in the work piece, both intended and unintended. Economic considerations and tradeoffs, as well as computer-integrated manufacturing topics, are also explored.
Lecture: 3 Lab: 0 Credits: 3

INTM 532
Manufacturing Processes for Electronics and Electrical Systems
The materials used in Electronic and Electrical (E&E) manufacturing will be reviewed including materials and components that are used to produce chips, PCBs, and wiring systems. Focus will be on the processes for producing the range of parts and products included in this broad sector. Automation for producing parts and assemblies will be covered. Techniques covered will include surface mounted technology (SMT), wave soldering, automation insertion, automated inspection, etc. The industrial structure that makes up this sector of manufacturing will be covered.
Lecture: 3 Lab: 0 Credits: 3

INTM 533
Chemical Manufacturing Processes in Industry
This course provides an overview of current and emerging chemical processes employed in the energy, food, drug, and plastics sectors. Current and future impacts of various manufacturing processes on society, environment, and sustainability are covered as are issues related to OSHA, EPA, FDA, USDA, and other regulatory systems. The various implications of recovery and reuse are explored as well as new non-polluting, zero-emissions processes and technologies. Students will gain an appreciable understanding of "how it's made"and the range of chemical processes and related technical challenges involved in manufacturing. A background in chemistry is not required.
Lecture: 3 Lab: 0 Credits: 3

INTM 535
Performance Management in Food Operations
Creating an organization-wide culture of quality and performance is critical to managing the unique demands of a food processing company. Learn how to develop, manage, and improve food production processes, implement lean principles to eliminate waste and improve yields, and measure operational performance. Topics covered include budgeting and financial tools, introducing new food products and processes, Total Quality Management (TQM), evaluation and management of supply chain activities, and strategy deployment techniques.
Lecture: 3 Lab: 0 Credits: 3
INTM 540
Supply Chain Management
This course covers the full range of activities involved in the supply chain. This includes management tools for optimizing supply chains, relationships with other parts of the organization, in-house versus third party approaches, and suitable performance measurements. Topics covered include Warehouse Management Systems (WMS), Transportation Management Systems (TMS), Advanced Planning and Scheduling Systems (APS) as well as cost benefit analysis to determine the most appropriate approach.
Lecture: 3 Lab: 0 Credits: 3

INTM 542
Warehousing and Distribution
This course covers warehouse layout and usage based on product requirement such as refrigeration, hazardous material, staging area, and value added activities. Processes covered include receiving, put-away, replenishment, picking, and packing. The requirement for multiple trailer/rail car loading and unloading considered as well as equipment needed for loading, unloading and storage. Computer systems for managing the operations are reviewed. Emphasis is on material handling from warehouse arrival through warehouse departure.
Lecture: 3 Lab: 0 Credits: 3

INTM 543
Purchasing
Purchasing responsibilities, processes, and procedures are included. Topics covered include: supplier selection and administration, qualification of new suppliers, preparing purchase orders, negotiating price and delivery, strategic customer/vendor relationships, and resolution of problems. All aspects of Supplier Relation Management (SRM) are covered.
Lecture: 3 Lab: 0 Credits: 3

INTM 544
Export/Import
Internationalization of industry requires special expertise and knowledge, which must be taken into consideration throughout all interactions with overseas companies either as customers or suppliers. Topics covered include custom clearance, bonded shipping, international shipping options, import financing and letters of credit, customer regulations, insurance, import duties and trade restrictions, exchange rates, and dealing with different cultures.
Lecture: 3 Lab: 0 Credits: 3

INTM 545
Strategic International Business
Organizational involvement in international business activities -- whether sourcing material and designs, expanding product sales and reach, or creating economies of scale and scope -- requires an understanding of various factors in international finance, marketing, and strategy. This course brings these disciplines together to explore financial factors that may add or transform risks, the necessary adjustments in the creation of global marketing strategy, and the strategies for creating and preserving a competitive advantage in the international arena.
Lecture: 3 Lab: 0 Credits: 3

INTM 546
Manufacturing and Logistics Information Systems
This course provides an overview of manufacturing and supply chain information systems, tools, and techniques utilized for effective decision making. Current state-of-the-art and commercially available industrial software packages, such as MRP, WMS, TMS, APS, etc., will be used and their impact on management decision making analyzed.
Lecture: 3 Lab: 0 Credits: 3

INTM 547
Supply Chain Strategies
The range of supply chain strategies to be considered when assessing a firm's internal and external supply chain network. Strategies involved in the end-to-end supply chain including product life cycle management (PLM), inventory optimization, network design optimization, management tools for optimizing supply chains, relationships with other parts of the organization, in-house versus third-party approaches, and suitable performance measurements.
Prerequisite(s): INTM 441 or INTM 540 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

INTM 559
Issues in Industrial Sustainability
Examines the concept of sustainability and its application in the industrial environment. Identifies underlying stresses on natural and human environments and the resultant problems for business and society including legal, ethical, and political issues related to sustainability. Global warming, peak oil, and commodity pricing are considered as indicators of the need for improvements in sustainability. Industrial ecology will be discussed as well as strategies for developing sustainable practices in manufacturing, power generation, construction, architecture, logistics, and environmental quality. Coverage includes case studies on businesses that have developed successful sustainability programs.
Lecture: 3 Lab: 0 Credits: 3

INTM 560
Sustainability of Critical Materials
This course explores the limitations in supply and the need for sustainable use of carbon and non-carbon-based materials such as oil, minerals, food, water, and other natural resources used by industry. Limitations in the global availability of such resources pose challenges to industry which will require careful consideration and planning to ensure continued prosperity for current and future generations. Course will cover strategies and options to mitigate anticipated shortages and optimize the use of non-renewable natural resources, review of fuel and raw material pricing, and cost/benefit analysis of sustainable development proposals. Technical analyses will be presented during class discussions, but a technical background is not required.
Lecture: 3 Lab: 0 Credits: 3
INTM 561
Energy Options in Industry
Carbon-based fuels are a limited resource and within decades will be in very short supply. Associated energy costs will increase and industry will be required to incorporate alternate fuels and/or power sources, such as uranium (for nuclear power), hydroelectric, geothermal, wind, wave, solar, etc. This course presents such energy options and explores the anticipated impact on industry.
Lecture: 3 Lab: 0 Credits: 3

INTM 562
Special Topics in Sustainability
This course allows the student to research and report on an industrial sustainability issue of interest and relevance to their career objectives. Topics may touch on industrial ecology, ethics, regulations, environment, resource use, alternative manufacturing methods, facilities, logistics, etc. This is the fourth course in a specialization in industrial sustainability.
Lecture: 0 Lab: 3 Credits: 3

INTM 594
Special Projects
Special project.
Credit: Variable

INTM 597
Special Projects
Independent study and project. Permission of instructor required.
Credit: Variable