CHEMICAL ENGINEERING (CHE)

CHE 503
Thermodynamics
Laws of thermodynamics applied to chemical and biological engineering problems, properties of real fluids, phase and chemical equilibria, applications to chemical and biological processes and auxiliary equipments. Core course.
Prerequisite(s): CHE 351 with min. grade of C and CHE 451 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CHE 506
Entrepreneurship and Intellectual Property Management
Graduate standing or consent of instructor. This course aims to introduce and develop a number of diversified professional skills necessary for success in an engineering research and development environment. Selected topics covered in the areas of technology entrepreneurship, opportunity assessment, creativity and innovation, project management, management of organizational change, entrepreneurial leadership, and intellectual property management.
Lecture: 3 Lab: 0 Credits: 3

CHE 508
Process Design Optimization
Organization of the design problem and application of single and multi-variable search techniques using both analytical and numerical methods. Prerequisite: An undergraduate course in process design.
Lecture: 3 Lab: 0 Credits: 3

CHE 516
Technologies for Treatment of Diabetes
Study of physiological control systems and engineering of external control of biological systems by focusing on an endocrine system disorder – diabetes. The effects of type 1 diabetes on glucose homeostasis and various treatment technologies for regulation of glucose concentration. Development of mathematical models describing the dynamics of glucose and insulin concentration variations, blood glucose concentration measurement and inference techniques, insulin pumps, and artificial pancreas systems.
Lecture: 3 Lab: 0 Credits: 3

CHE 525
Chemical Reaction Engineering
Prerequisite(s): CHE 423 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CHE 530
Advanced Process Control
Prerequisite(s): CHE 435 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CHE 535
Applications of Mathematics to Chemical Engineering
Mathematical techniques and their application to the analytical and numerical solution of chemical engineering problems. The analytical component includes review of matrices and determinants, as well as solution of ordinary, partial differential and integral equations. The numerical component includes iterative solution of algebraic equations, numerical analysis and solution of ordinary differential equations. Core course.
Lecture: 3 Lab: 0 Credits: 3

CHE 536
Computational Techniques in Engineering
Lecture: 3 Lab: 0 Credits: 3

CHE 538
Polymerization Reaction Engineering
The engineering of reactors for the manufacture of synthetic polymeric materials, commercial processes for manufacture of polymers of many types, polymer chemistry and engineering reactor design.
Prerequisite(s): CHE 423 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CHE 541
Renewable Energy Technologies
The course will cover three topics related to renewable Energy Technologies. 1. Review of renewable energy sources; solar, wind, biomass, etc. 2. Energy storage and conversion with emphasis on batteries and fuel cells 3. Hydrogen as an energy carrier and the Hydrogen Economy.
Lecture: 3 Lab: 0 Credits: 3

CHE 542
Fluidization and Gas-Solids Flow Systems
Lecture: 3 Lab: 0 Credits: 3
CHE 543
Energy, Environment, and Economics
The linkage of energy, environmental and economic issues. The impact of energy supply and end use on human well-being and the ecosystem. A comprehensive approach to the resolution of resource, technical, economic, strategic, environmental, socio- and geopolitical problems of the energy industries. Pathways to a sustainable global energy system.
Lecture: 3 Lab: 0 Credits: 3

CHE 545
Metabolic Engineering
Cellular metabolism, energetics and thermodynamics of cellular metabolism, regulation of metabolic pathways, metabolic flux analysis, metabolic control analysis, analysis of metabolic networks, synthesis and manipulations of metabolic pathways, applications - case studies.
Lecture: 3 Lab: 0 Credits: 3

CHE 551
Advanced Transport Phenomena
Formulation, solution and interpretation of problems in momentum, energy and mass transport phenomena that occur in chemical and biological processes.
Prerequisite(s): CHE 406
Lecture: 3 Lab: 0 Credits: 3

CHE 553
Advanced Thermodynamics
Advanced thermodynamics for research-oriented graduate students. The course covers the fundamental postulates of thermodynamics and introductory statistical mechanics, with applications to pure fluids, fluid mixtures, elastic solids, surfaces and macromolecules.
Prerequisite(s): CHE 351 with min. grade of C and CHE 451 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CHE 555
Polymer Processing
Analysis of momentum, heat and mass transfer in polymer processing operations. Polymer processes considered include extrusion, calendaring, fiber spinning, injection molding, and mixing.
Prerequisite(s): CHE 406 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CHE 556
Fundamentals of Electrochemistry
Thermodynamics and potential, Marcus theory, charge transfer kinetics and mass transport of simple systems. Electrode reactions couple with homogeneous chemical reactions. Double layer structure and adsorbed intermediates in electrode processes. Potential step and potential sweep methods.
Lecture: 3 Lab: 0 Credits: 3

CHE 557
Fuel Cell Fundamentals
A detailed study of the thermodynamics, electrochemistry, electrode kinetics and materials aspects of fuel cells with an emphasis on polymer electrolyte fuel cells. The course will include a vigorous laboratory component and will cover the development of detailed data analysis procedures. A part of the course will cover current trends and interests through the critical discussion of recent archival publications.
Lecture: 2 Lab: 1 Credits: 3

CHE 559
Bioprocess Engineering
Application of engineering principles to the biological production processes. Enzyme kinetics, cell culture kinetics, transport phenomena in cells, membranes, and biological reactors, genetics, bioseparation and downstream processing, energetics of metabolic pathways, operation modes of cell cultures, mixed and their applications.
Lecture: 3 Lab: 0 Credits: 3

CHE 560
Statistical Quality and Process Control
Basic theory, methods and techniques of on-line, feedback, quality-control systems for variable and attribute characteristics. Methods for improving the parameters of the production, diagnosis and adjustment processes so that quality loss is minimized. Same as MMAE 560.
Lecture: 3 Lab: 0 Credits: 3

CHE 565
Fundamentals of Electrochemistry
Thermodynamics and potential, Marcus theory, charge transfer kinetics and mass transport of simple systems. Electrode reactions couple with homogeneous chemical reactions. Double layer structure and adsorbed intermediates in electrode processes. Potential step and potential sweep methods.
Lecture: 3 Lab: 0 Credits: 3

CHE 566
Electrochemical Engineering
Basic concepts of electrochemistry used in electrochemical reactor analysis and design. Thermodynamics, kinetics and transport processes in electrochemical systems, current and potential distribution, corrosion engineering, electrodeposition, batteries and fuel cells, industrial electrolysis, and electrosynthesis.
Lecture: 3 Lab: 0 Credits: 3

CHE 567
Polymer Rheology
Flow of viscoelastic fluids, integral and differential constitutive equations from continuum and molecular considerations, methods of experimental evaluations.
Prerequisite(s): CHE 406 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CHE 575
Polymer Rheology
Flow of viscoelastic fluids, integral and differential constitutive equations from continuum and molecular considerations, methods of experimental evaluations.
Prerequisite(s): CHE 406 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CHE 577
Bioprocess Engineering
Application of engineering principles to the biological production processes. Enzyme kinetics, cell culture kinetics, transport phenomena in cells, membranes, and biological reactors, genetics, bioseparation and downstream processing, energetics of metabolic pathways, operation modes of cell cultures, mixed and their applications.
Lecture: 3 Lab: 0 Credits: 3

CHE 580
Biomaterials
Metal, ceramic, and polymeric implant materials. Structure-property relationships for biomaterials. Interactions of biomaterials with tissue. Selection and design of materials for medical implants.
Lecture: 3 Lab: 0 Credits: 3
CHE 582
Interfacial and Colloidal Phenomena with Applications
Applications of the basic principles of physical chemistry, surfactants and interfacial phenomena, surface and interfacial tension, adsorption of surfactants from solutions, spreading, contact angles, wetting, electro kinetic phenomena, rheology, dynamic interfacial properties, mass transport across interfaces. Applications include emulsions, foams, dispersions, tribology, detergency, flotation, enhanced oil recovery, suspension, emulsion polymerization and liquid membranes.
Prerequisite(s): (CHE 351 with min. grade of C or CHE 451 with min. grade of C) and CHE 406 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

CHE 583
Pharmaceutical Engineering
Lecture: 3 Lab: 0 Credits: 3

CHE 584
Tissue Engineering
Lecture: 3 Lab: 0 Credits: 3

CHE 585
Drug Delivery
Lecture: 3 Lab: 0 Credits: 3

CHE 591
Research and Thesis for M.S. Degree
Credit: Variable

CHE 593
Seminar in Chemical Engineering
Presentations on recent developments in the field by academic and industrial visitors.
Lecture: 0 Lab: 1 Credits: 1

CHE 594
Special Projects
Advanced projects involving computer simulation, modeling or laboratory work. (Credit: 1-6 hours.)
Credit: Variable