ENGR 502
Medical Device Regulations and Commercialization
This course helps prepare students for commercializing medical devices within a highly-regulated environment. Concepts include protecting intellectual property, the structure and scope of the Federal Drug Administration (FDA), developing, testing, producing and marketing medical devices under FDA regulations, total product lifecycle, and quality management.
Lecture: 3 Lab: 0 Credits: 3

ENGR 510
Strategic Engineering Management
This course will review technology-based enterprises and the driving forces that impact corporate strategy. Students will learn how to apply engineering knowledge to determine technology/product direction and make/buy/partnering decisions. Relationships between research and development, operations, finance, marketing, and other functions within engineering-based organizations that drive strategic decisions will be examined. Strategy development and competitive analysis will be included. Case studies from the industry relevant to the student’s engineering track will be reviewed.
Lecture: 3 Lab: 0 Credits: 3

ENGR 520
Best Practices in Engineering Project Management
Many engineering projects suffer due to weak business cases, schedule slippages, and cost overruns. This course presents commonly used tools and techniques and best practices to build an effective business case, develop a realistic schedule and budget, and successfully execute and complete a project. Students are introduced to a generic project management life cycle model, review basic project management principles, tools, and techniques, and learn engineering-tailored best practices used by high performing, project-centric organizations. Students have an opportunity to apply selected tools in the form of short classroom exercises.
Lecture: 3 Lab: 0 Credits: 3

ENGR 521
Risk Management in Engineering Projects
In project management, a risk is considered an uncertain event that may have a positive or a negative impact on project objectives. Managing identified threats individually through customized strategies is key to project success. Similarly, opportunities must be leveraged for better project outcomes. Implementation of an effective risk management process is imperative for today’s complex projects. This course presents a five-step process to manage project threats as well as opportunities. On every project, students will be able to identify and analyze risks and develop response strategies for each identified risk and take proper response action to manage the risks. Industry best practices and quantitative tools and simulations are used to analyze risk.
Lecture: 3 Lab: 0 Credits: 3

ENGR 531
Urban Systems Engineering Design
ENGR 531 is a project-based course where students will explore integrated designs of urban systems. Each project will apply the students’ engineering disciplines (such as structures, transportation, building science, construction engineering and management, environmental engineering) in a comprehensive analysis that considers the economic, human, and environmental issues associated with the project.
Lecture: 3 Lab: 0 Credits: 3

ENGR 532
Urban Systems Engineering Seminar
ENGR 532 is an active seminar course that emphasizes current topics in urban systems engineering. Invited speakers will include researchers and representatives from current practice, such as municipal and regional planners and consultants. Appropriate readings will be assigned in advance of each speaker to guide students in preparation for active discussion with each speaker. Each student will also write a term paper on an urban systems engineering topic of their choice, connecting material from the assigned reading, the speakers, and additional references selected by the student.
Lecture: 3 Lab: 0 Credits: 3

ENGR 534
Product Design and Innovation
This course covers all aspects of planning new products or services that are commercially viable and add to a company’s suite of offerings. It includes such topics as user research, market analysis, need/problem identification, creative thinking, ideation, concepting, competitive benchmarking, human factors, prototyping, evaluation, and testing. The course includes creative, analytical, and technical skills in a balanced approach using such teaching methods as case studies, individual exercises, and group projects.
Lecture: 3 Lab: 0 Credits: 3

ENGR 539
Robotic Motion Planning
Configuration space. Path planning techniques including potential field functions, roadmaps, cell decomposition, and sampling-based algorithms. Kalman filtering. Probabilistic localization techniques using Bayesian methods. Trajectory planning.
Lecture: 3 Lab: 0 Credits: 3

ENGR 572
Construction Cost Accounting and Control
Lecture: 3 Lab: 0 Credits: 3
ENGR 573
Construction Contract Administration
Lecture: 3 Lab: 0 Credits: 3

ENGR 574
Economic Decision Analysis in Civil Engineering
Basic economic concepts including interest calculations, economic comparison of alternatives, replacement decisions, depreciation and depletion, tax considerations, and sensitivity analysis. Evaluation of public projects, the effect of inflation, decision making under risk and/or uncertainty, economic decision models. Case studies from the construction industry.
Lecture: 3 Lab: 0 Credits: 3

ENGR 575
Systems Analysis in Engineering
Management and system concepts, linear programming, graphical methods, Simplex, two-phase Simplex, the transportation problem, the assignment problem, integer programming, and sensitivity analysis. System modeling by activity networks; maximal-low flow, longest-path and shortest-path analyses, flow graphs, decision-tree analysis, stochastic-network modeling, queuing systems, and analysis of inventory systems. Case studies from the construction industry.
Lecture: 3 Lab: 0 Credits: 3

ENGR 576
Nano Manufacturing
This course covers the general methods used for micro- and nanofabrication and assembly, including photolithography techniques, physical and chemical deposition methods, masking, etching, and bulk micromachining as well as self-assembly techniques. It also covers nanotubes, nanowires, nanoparticles, and the devices that use them, including both electronic and mechanical-electronic systems, as well as nano-structural materials and composites. Focus is on commercially available current processes as well as emerging technologies and evolving research areas. Sensing and instrumentation as well as nano-positioning and actuation are covered briefly.
Lecture: 3 Lab: 0 Credits: 3

ENGR 577
Nano Manufacturing
This course covers the general methods used for micro- and nanofabrication and assembly, including photolithography techniques, physical and chemical deposition methods, masking, etching, and bulk micromachining as well as self-assembly techniques. It also covers nanotubes, nanowires, nanoparticles, and the devices that use them, including both electronic and mechanical-electronic systems, as well as nano-structural materials and composites. Focus is on commercially available current processes as well as emerging technologies and evolving research areas. Sensing and instrumentation as well as nano-positioning and actuation are covered briefly.
Lecture: 3 Lab: 0 Credits: 3

ENGR 578
Additive Manufacturing
This course examines the fundamentals of a variety of additive manufacturing processes as well as design for additive manufacturing, materials available, and properties and limitations of materials and designs. It also examines the economics of additive manufacturing as compared to traditional subtractive manufacturing and other traditional techniques. Additive techniques discussed include 3D printing, selective laser sintering, stereo lithography, multi-jet modeling, laminated object manufacturing, and others. Advantages and limitations of all current additive technologies are examined as well as criteria for process selection. Processes for metals, polymers, and ceramics are covered. Other topics include software tools and connections between design and production, direct tooling, and direct manufacturing. Current research trends are discussed.
Lecture: 3 Lab: 0 Credits: 3

ENGR 579
Product Development for Entrepreneurs
Elements of product development (mechanical and electrical), manufacturing and production planning, supply chain, marketing, product research, and entrepreneurship concepts are taught in this course. In this course, student teams will be required to create a compelling product that has potential to be sold in today’s marketplace. They will be required to create functional prototypes of their product for people to use and critique. If successful, students will be allowed to put their product on Kickstarter.com and take orders for delivery after the class is complete while potentially fostering their own business as a result of this course.
Lecture: 3 Lab: 0 Credits: 3
ENGR 596
Practical Engineering Training
This course is a mentored, immersive practical engineering training. Students learn under the direction of professional engineers and practicing engineers by working on real engineering projects. The student will perform hands-on engineering, including learning and developing/applying engineering principles and concepts to complete the project assigned to the student. The student will apply engineering ethics and safety during their practical engineering training. Students will communicate the results of their work in written and oral communications. Students will receive assignments of varying complexity consistent with their graduate standing.
Lecture: 0 Lab: 9 Credits: 3

ENGR 598
Graduate Research Immersion: Team Project
This course provides a faculty-mentored immersive team-based research experience. Research topics are determined by the faculty mentor’s area of research. In addition to the mentored research, students participate in seminars, prepare a written report of their research findings, and present their research findings at a poster expo.
Lecture: 3 Lab: 0 Credits: 3

ENGR 599
Graduate Research Immersion: Individual
This course provides a faculty-mentored immersive research experience. Research topics are determined by the faculty mentor’s area of research. In addition to the mentored research, students participate in seminars, prepare a written report of their research findings, and present their research findings at a poster expo.
Lecture: 3 Lab: 0 Credits: 3