BIOMEDICAL ENGINEERING

Wishnick Hall, Suite 314
3255 S. Dearborn St.
Chicago, IL 60616
312.567.5324
bme@iit.edu
engineering.iit.edu/bme

Chair
John G. Georgiadis

Faculty with Research Interests
For information regarding faculty visit the Department of Biomedical Engineering website.

Mission
The mission of the biomedical engineering undergraduate program is to educate students in the fundamentals of biomedical engineering. This foundation consists of a broad exposure to the chemical, mathematical, physical, and biological sciences, coupled with the appropriate technical and engineering skills to be able to fill diverse professional roles in industry, graduate school, and the medical professions.

Biomedical Engineering at Illinois Institute of Technology
Biomedical engineering is an interdisciplinary major in which the principles and tools of traditional engineering fields such as mechanical, materials, electrical, and chemical engineering are integrated with the chemical, physical, and biological sciences. Together, they are applied towards a better understanding of physiological processes in humans or towards the solution of medical problems. Engineering will continue to play an increasingly important role in advancing medical treatment, developing biotechnology, and improving healthcare delivery. By its very nature, biomedical engineering is expansive and requires a broad and integrated foundation in the physical, chemical, mathematical, and biological sciences.

Program Outcomes and Objectives
At the undergraduate level, the department offers a four-year engineering curriculum leading to a Bachelor of Science (B.S.) in Biomedical Engineering.

Our students will attain the following outcomes by the time of their graduation:

• An ability to apply knowledge of mathematics, science, and engineering.
• An ability to design and conduct experiments, as well as to analyze and interpret data.
• An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
• An ability to function on multi-disciplinary teams.
• An ability to identify, formulate, and solve engineering problems.
• An ability to communicate effectively.
• The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
• A recognition of the need for and an ability to engage in life-long learning.
• A knowledge of contemporary issues.
• An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

The program educational objectives for the BME program are:

• Graduates will meet the expectations of employers of biomedical engineers.
• Qualified graduates will pursue advanced study if they so desire.
• Graduates will assume/undertake leadership roles in their professions.

Areas of Specialization (Tracks)
The biomedical engineering program has three areas of specialization (or tracks): cell and tissue engineering, medical imaging, and neural engineering. While distinct in their concept, these areas share core exposure to the physical, chemical, biological, and engineering sciences. Thus, there is potential for considerable crossover among the areas at the upper-division level. This is indicated by the track course options.
Medical School Admission
For information regarding admission to medical schools, please visit science.iit.edu/pre-medicine.

Degree Programs
- Bachelor of Science in Biomedical Engineering: Cell and Tissue Engineering Track
- Bachelor of Science in Biomedical Engineering: Medical Imaging Track
- Bachelor of Science in Biomedical Engineering: Neural Engineering Track

Co-Terminal Options
The Department of Biomedical Engineering also offers the following co-terminal degrees, which enables a student to simultaneously complete both an undergraduate and graduate degree in as few as five years:
- Bachelor of Science in Biomedical Engineering/Master of Biomedical Imaging and Signals
- Bachelor of Science in Biomedical Engineering/Master of Chemical Engineering
- Bachelor of Science in Biomedical Engineering/Master of Science in Biology for the Health Professions

These co-terminal degrees allow students to gain greater knowledge in specialized areas while, in most cases, completing a smaller number of credit hours with increased scheduling flexibility. For more information, please visit the Department of Biomedical Engineering website (engineering.iit.edu/bme).

Course Descriptions

BME 100
Introduction to the Profession
Introduces the student to the scope of the biomedical engineering profession and its role in society, and develops a sense of professionalism in the student. Provides an overview of biomedical engineering through lectures, presentations by outside speakers, hands-on exercises, and scientific literature analyses. Develops professional communication and teamwork skills.

Lecture: 1 Lab: 2 Credits: 2
Satisfies: Communications (C)

BME 200
Biomedical Engineering Application of MATLAB
This course will provide students an opportunity to learn how to use the MATLAB programming environment to solve biomedical engineering problems. Students will learn basic MATLAB functions for importing, analyzing, visualizing, and exporting data, as well as computational techniques for modeling and solving quantitative engineering problems. Examples will be taken from the three areas of specialization offered in the biomedical engineering department — cell and tissue engineering, neural engineering, and medical imaging.

Prerequisite(s): MATH 252* and CS 115, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 1 Lab: 3 Credits: 2

BME 301
Bio-Fluid Mechanics
Basic properties of fluids in motion. Lagrangian and Eulerian viewpoints, material derivative, streamlines. Continuity, energy, angular and linear momentum equations in integral and differential forms. Applications in biofluids and biomedical devices; rheology of biological fluids.

Corequisite(s): BME 320
Prerequisite(s): MATH 251 and MMAE 200 and BIOL 115
Lecture: 3 Lab: 0 Credits: 3

BME 309
Biomedical Imaging
An introduction to biomedical imaging concepts and modalities. Topics covered include general principles of image science (image quality, sampling, etc.), X-ray-based imaging [conventional x-ray imaging, mammography, computed tomography (CT), and digital subtraction angiography (DSA)], and nuclear medicine [gamma camera, single photon emission computed tomography (SPECT), and positron emission tomography (PET)].

Prerequisite(s): BME 330* and PHYS 221, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

BME 310
Biomaterials
Applications of biomaterials in different tissue and organ systems. Relationship between physical and chemical structure of materials and biological system response. Choosing, fabricating, and modifying materials for specific biomedical applications.

Prerequisite(s): CHEM 125 and PHYS 123
Lecture: 3 Lab: 0 Credits: 3
Satisfies: Communications (C)

BME 315
Instrumentation and Measurement Laboratory
Laboratory exercises stress instrumentation usage and data analysis used to determine physiological functions and variables and the relations to the physiological variability.

Prerequisite(s): ECE 211* and CS 104, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 1 Lab: 3 Credits: 2
Satisfies: Communications (C)
BME 320
Fluids Laboratory
Laboratory experiments in thermodynamics, biological fluid flow, and heat transfer. Emphasis is placed on current methods, instrumentation, and equipment used in biomedical engineering; oral presentation of results; and on the writing of comprehensive reports. Open only to Biomedical Engineering majors.
Prerequisite(s): BME 301
Lecture: 0 Lab: 3 Credits: 1
Satisfies: Communications (C)

BME 325
Bioelectronics Laboratory
Practical hands on design, construction and testing of electric and electronic circuitry for biomedical applications. Basic concepts will be presented with emphasis on their relevance to the design of systems that can be used for clinical and basic scientific research.
Prerequisite(s): ECE 213 and BME 315
Lecture: 0 Lab: 3 Credits: 1

BME 330
Analysis of Biosignals and Systems
This course is a junior level introduction to the theoretical and practical aspects of signal processing and dynamic systems behavior as they relate to physiological, biological, and biomedical systems. The topics covered will include sampling theory, continuous and discrete Fourier transforms and series, Laplace transforms, Linear systems theory, signal filtering, models of biological and physiological systems, and analysis of dynamic and feedback systems.
Prerequisite(s): ECE 211 and MATH 252
Lecture: 3 Lab: 0 Credits: 3

BME 331
Modeling and Control of Biological Systems
The course expands upon the systems and signal processing concepts introduced in BME 330 to develop the tools to model physiological processes and the feedback control of these processes.
Prerequisite(s): (BME 330 or ECE 308) and BME 422
Lecture: 3 Lab: 0 Credits: 3

BME 335
Thermodynamics of Living Systems
Principles of thermodynamics and conservation of mass applied to living systems and biomedical devices. The first and second laws of thermodynamics, pHs and chemical equilibrium, metabolic stoichiometry and energetics.
Prerequisite(s): CHE 202 and BME 301* and MATH 251, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

BME 405
Physiology Laboratory
A laboratory course which demonstrates basic concepts of bioengineering design through experimental procedures involving humans and experimental animals. Statistical principles of experimental design. Study of possible errors. Experiments include nerve action, electrocardiography, mechanics of muscle, membranes, and noninvasive diagnostics in humans. Open only to Biomedical Engineering majors.
Prerequisite(s): BME 453
Lecture: 1 Lab: 3 Credits: 2
Satisfies: Communications (C)

BME 417
Technologies for Treatment of Diabetes
Study of physiological control systems and engineering of external control of biological systems by focusing on an endocrine system disorder – diabetes. The effects of type 1 diabetes on glucose homeostasis and various treatment technologies for regulation of glucose concentration. Development of mathematical models describing the dynamics of glucose and insulin concentration variations, blood glucose concentration measurement and inference techniques, insulin pumps, and artificial pancreas systems.
Lecture: 3 Lab: 0 Credits: 3

BME 418
Reaction Kinetics for BME
This course focuses on analysis of rate data and single and multiple reaction schemes. Biomedical topics include biological systems, enzymatic pathways, enzyme and receptor-ligand kinetics, pharmacokinetics, heterogeneous reactions, microbial cell growth and product formation, and the design and analysis of biological reactors.
Prerequisite(s): BME 482
Lecture: 3 Lab: 0 Credits: 3

BME 419
Introduction to Design Concepts in Biomedical Engineering
Introduction to Design Concepts in Biomedical Engineering. This course aims to educate students on project definition, and on the design, development and technology transfer of potential biomedical products in the context of the student’s major capstone project. Students will learn best practices for designing a marketable medical device, including the design process from the clinical problem definition through prototype and clinical testing to market readiness.
Prerequisite(s): BME 315 and (BME 320 or BME 325) and BME 422
Lecture: 2 Lab: 0 Credits: 2
Satisfies: Communications (C)
BME 420
Design Concepts in Biomedical Engineering
An introduction to the strategies and fundamental bioengineering design criteria behind the development of biomedical engineering systems and implantable devices that use either synthetic materials or hybrid (biological-synthetic) systems. Analysis and design of replacements for the heart, kidneys, and lungs. Specification and realization of structures for artificial organ systems. Students will be required to complete a team-oriented design project in their chosen track.
Prerequisite(s): BME 419
Lecture: 3 Lab: 0 Credits: 3
Satisfies: Communications (C)

BME 422
Mathematical Methods for Biomedical Engineers
This course integrates mathematical and computational tools that address directly the needs of biomedical engineers. The topics covered include the mathematics of diffusion, pharmacokinetic models, biological fluid mechanics, and biosignal representations and analysis. The use of MATLAB will be emphasized for numerically solving problems of practical relevance.
Prerequisite(s): MATH 252 and CS 104 and BME 330*, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

BME 423
Cell Biomechanics: Principles and Biological Processes
This course will provide students an opportunity to learn about mechanical forces that develop in the human body and how they can influence cell functions in a range of biological processes from embryogenesis, wound healing, and regenerative medicine to pathological conditions such as cancer invasion. Examples of research methods for investigating cell biomechanics in various biological systems will be discussed.
Prerequisite(s): BME 301
Lecture: 3 Lab: 0 Credits: 3

BME 424
Quantitative Aspects of Cell and Tissue Engineering
This course is designed to cover fundamentals of cell and tissue engineering from a quantitative perspective. Topics addressed include elements of tissue development, cell growth and differentiation, cell adhesion, migration, molecular and cellular transport in tissues and polymeric hydrogels for tissue engineering and drug delivery applications.
Prerequisite(s): BME 418 and BME 482 and BME 422
Lecture: 3 Lab: 0 Credits: 3

BME 425
Microfluidics for Biomedical Engineering
This course will present fundamentals and applications of microfluidic technologies for applications in the broad biomedical engineering. It will provide a broad view of the field of microfluidics and a knowledge of relevant fabrication methods and analysis techniques. Microfluidic fabrication techniques, interfacing with biological materials, and techniques for analyte detection in microchannels will be emphasized. The course will include individual projects and critical paper reviews in which each student is expected to demonstrate a grasp of basic concepts in microfluidic design and fabrication for specific applications.
Lecture: 3 Lab: 0 Credits: 3

BME 431
Modern Optics and Lasers
This is an undergraduate course covering the basics of optics and modern aspects of the field such as lasers and nonlinear optics. Connections to other fields such as acoustics, microwaves, electron-beam optics, quantum mechanics will be pointed out. The theory will be supplemented with demonstration experiments of optical phenomena. Practical problems will be discussed such as the design of an optical imaging system or precision interferometry.
Prerequisite(s): PHYS 221
Lecture: 3 Lab: 0 Credits: 3

BME 433
Biomedical Engineering Applications of Statistics
Application of modern computing methods to the statistical analysis of biomedical data. Sampling, estimation, analysis of variance, and the principles of experimental design and clinical trials are emphasized.
Prerequisite(s): MATH 251
Lecture: 3 Lab: 0 Credits: 3

BME 437
Introduction to Molecular Imaging
This course provides an overview of molecular imaging, a subcategory of medical imaging that focuses on noninvasively imaging molecular pathways in living organisms. Topics include imaging systems, contrast agents, reporter genes and proteins, tracer kinetic modeling. Preclinical and clinical applications will also be discussed with an emphasis on cancer and the central nervous system.
Prerequisite(s): BME 422
Lecture: 3 Lab: 0 Credits: 3
BME 438
Neuroimaging
This course describes the use of different imaging modalities to study brain function and connectivity. The first part of the course deals with brain function. It includes an introduction to energy metabolism in the brain, cerebral blood flow, and brain activation. It continues with an introduction to magnetic resonance imaging (MRI), perfusion-based fMRI, BOLD fMRI, fMRI paradigm design and statistical analysis, introduction to positron emission tomography (PET) and studying brain function with PET, introduction to magneto encephalography and studying brain function with (MEG). The second part of the course deals with brain connectivity. It includes an introduction to diffusion tensor MRI, explanation to the relationship between the diffusion properties of tissue and its structural characteristics, white matter fiber tractography.
Prerequisite(s): PHYS 221
Lecture: 3 Lab: 0 Credits: 3

BME 439
Advanced Medical Imaging
This course introduces advanced clinical imaging modalities, research imaging techniques, and concepts from image science and image perception. The first part of the course introduces the perception of image data by human observers and the visualization of brain structure and function. It includes an introduction to magnetic resonance imaging (MRI) and a survey of neurological imaging via functional MRI (fMRI). The second part of the course covers image science, clinical imaging applications, and novel research imaging techniques. It includes an introduction to radiation detection and image quality evaluation, a survey of clinical cases, and an overview of new imaging methods.
Prerequisite(s): BME 309
Lecture: 3 Lab: 0 Credits: 3

BME 443
Biomedical Instrumentation and Electronics
Principles of circuit analysis are applied to typical transducer and signal recording situations found in biomedical engineering.
Prerequisite(s): BME 315 and ECE 211
Lecture: 3 Lab: 0 Credits: 3

BME 445
Quantitative Neural Function
Computational approach to basic neural modeling and function, including cable theory, ion channels, presynaptic potentials, stimulation thresholds, and nerve blocking techniques. Synaptic function is examined at the fundamental level.
Prerequisite(s): BME 453
Lecture: 3 Lab: 0 Credits: 3

BME 450
Animal Physiology
Respiration; circulation; energy metabolism; temperature regulation; water and osmotic regulation; digestion and excretion; muscle and movement; nerve excitation; information control and integration; chemical messengers. Emphasis on general principles with examples drawn from various animal phyla. Same as BIOL 430.
Prerequisite(s): BIOL 107 or BIOL 115
Lecture: 3 Lab: 0 Credits: 3

BME 452
Control Systems for Biomedical Engineers
Control systems design and analysis in biomedical engineering. Time and frequency domain analysis, impulse vs. step response, open vs. closed loop response, stability, adaptive control, system modeling. Emphasis is on understanding physiological control systems and the engineering of external control of biological systems.
Prerequisite(s): BME 330
Lecture: 3 Lab: 0 Credits: 3

BME 453
Quantitative Physiology
This course provides a quantitative approach to fundamental physiological principles and systems. The course covers basic cell physiology, membrane transport, action potentials and excitable tissue, and skeletalmuscular, nervous, cardiovascular, respiratory, renal, and endocrine systems.
Prerequisite(s): BME 405
Lecture: 3 Lab: 0 Credits: 3

BME 455
Cardiovascular Fluid Mechanics
Anatomy of the cardiovascular system. Scaling principles. Lumped parameter, one-dimensional linear and nonlinear wave propagation, and three-dimensional modeling techniques applied to simulate blood flow in the cardiovascular system. Steady and pulsatile flow in rigid and elastic tubes. Form and function of blood, blood vessels, and the heart from an engineering perspective. Sensing, feedback, and control of the circulation. Possible project using custom software to run blood flow simulations. Same as MMEA 455.
Prerequisite(s): BME 301 or MMEA 310 or MMEA 313
Lecture: 3 Lab: 0 Credits: 3

BME 475
Neuromechanics of Human Movement
Concepts from mechanics and neurophysiology will be introduced and employed to analyze and model human movement, especially of the extremities. Topics will include forward and inverse kinematics and dynamics, muscle modeling, and feedback control.
Prerequisite(s): BME 330 or ECE 308 or MMAE 305
Lecture: 3 Lab: 0 Credits: 3

BME 482
Mass Transport for Biomedical Engineers
This course seeks to provide students with an introduction to advanced concepts of mass transport with an emphasis on biological systems. Students will be exposed to derivation of the conservation equations for heat, mass, and momentum. Following derivation of these laws, focus will be placed on mass transport applications, including diffusion, convection-diffusion, diffusion with reactions, and facilitated diffusion. Students will be able to apply mass transport equations to solve problems in biological systems.
Prerequisite(s): BME 418
Lecture: 3 Lab: 0 Credits: 3
BME 490
Senior Seminar
Lecture: 1 Lab: 0 Credits: 1
Satisfies: Communications (C)

BME 491
Independent Study
Focused reading and study under the supervision of a BME faculty member. A final written report is required to receive credit. **Instructor permission required.**
Credit: Variable
Satisfies: Communications (C)

BME 492
Undergraduate Research
Independent research (experimental or theoretical/computational) under the supervision of a BME faculty member. A final written report is required to receive credit. **Instructor permission required.**
Credit: Variable
Satisfies: Communications (C)

BME 493
BME Undergraduate Project
Research or design projecting involving 2 or more students under supervision of a BME faculty member. A final written report from each student is required to receive credit. **Instructor permission required.**
Lecture: 3 Lab: 0 Credits: 3

BME 497
Special Problems
Design, development, analysis or research on special topics defined by a faculty member or the department. **Instructor permission required.**
Lecture: 0 Lab: 3 Credits: 3