Industrial Tech and Mgmt (INTM)
Review, analyze and practice verbal and written communication formats found in the workplace. Emphasis is on developing skills in technical writing, oral presentations, business correspondence, and interpersonal communication using electronic and traditional media. Credit not granted for both INTM 301 and COM 421.
Maintenance of facilities is a major concern for all industrial operations. Course covers technologies involved as well as the management aspects of maintaining buildings, construction and equipment installation and maintenance for all types of operations.
An introduction to the world of industrial enterprises and the organizational priorities required to achieve efficiency and competitiveness. Students learn to assess the present state of a company, address performance issues, foster functional communication and cooperation between departments, identify sources and impacts of waste, identify value-added activities, and transform outdated business practices into flexible, customer-driven processes.
Basic overview of electrical and electronic technology in industry. Emphasis on electrical and electronic components, industrial devices, electrical theory, application and basic troubleshooting. Students select and complete an electrical or electronic class project.
Projects are the driving force behind innovation and improvement in any organization. This course identifies the tools and techniques needed to lead any project to its intended conclusion. Topics include project plans, managing expectations and contingencies, building a winning team, gaining commitments, managing project risks, and development of personal skills critical to the successful project manager.
This course examines marketing and sales and the differences and details of these activities as applied within industry. The range of marketing types is covered to include business-to-business, industrial, commercial, retail, internet, social media, and entrepreneurial/professional. Sales fundamentals include understanding the customer and the competition, sales strategy, sales management, product positioning, product life cycle, sales structures, margins, and prospecting for new customers. Product development is addressed throughout the course inclusive of market feedback, product evaluation, opportunity assessment, prototyping, field trials and market testing, and product launch.
This course focuses on how organizations manage quality in a competitive marketplace regardless of the nature of the industry. Topics include principles of quality, cost of quality, inspection and receiving, audits, corrective and preventive action systems, supplier performance management (SPM), FMEA and control plans, process capability studies and statistical process control (SPC), measurement system analysis, quality management systems (QMS), process improvement methodologies (Lean, Six Sigma, and Kaizen), and creation of a performance dashboard.
Introduces the full range of technologies involved in construction of both new and modified facilities, including steel, concrete and timber construction as well as supporting specialties such as HVAC, electrical, plumbing, etc. the interaction between the various construction trades will be covered along with the role of the architects and engineers.
This course introduces accounting information used for decision-making within a business enterprise. Financial reporting, financial terminology, and the three major financial statements are reviewed. Product costing, short-term and long-term decision-making, budgeting, control of operations, and performance evaluations are covered as are cost-volume-profit relationships, relevant costs, flexible budgets, and standard costs.
Fundamentals of inventory control including inventory classifications, i.e. raw materials, work-in-process (WIP), and finished goods. Topics include inventory record keeping, inventory turnover, the 80/20 (or ABC) approach, safety stock, forecasting, dependent and independent demand, lead times, excess/obsolete inventory, and inventory controls. Material Resource Planning (MRP) and Enterprise Resource Planning (ERP) are included.
Focuses on core processes within an organization -- the activities that add value. An operations strategy depends on the industrial sector as well as the organization. This course introduces a variety of qualitative and quantitative tools for such activities as project management, process analysis, job design, forecasting, resource planning, productivity, quality, inventory, and scheduling. The objective of this course is to provide the framework for integrating approaches covered in other INTM courses.
Covers key activities in facilities management, the role and responsibilities of the facilities manager, and the functional aspects of management and maintenance activities by building type (commercial, high rise, hotels, hospital, data center). Budgeting, strategic planning, and coordination of capital and operating projects; inspection, repair, and renovation of equipment and buildings in accordance with health and safety standards; managing internal staffing, external contractors, insurance and control activities (parking, waste disposal, building security, etc.). Information systems, real estate management, sustainability issues and emergency preparedness also covered.
This course covers fundamentals of project administration and characteristics of the construction industry. Pre-construction discussion includes technical and economic feasibility, project delivery systems, documents, bonding, and bidding. Duties and liabilities of parties at pre-contract stage and during contract administration to include scheduling and time extensions, payments, retainage, substantial and final completion, change orders, suspension of work, contract termination, and dispute resolution. Labor law, labor relations, safety, and general management of a construction company.
This course covers project management in the PMP framework and provides a structured approach to managing projects using Microsoft Project and Excel. Coverage includes creation of key project management charts (Gantt, Pert, CPM, timelines and resource utilization), basic statistics used in estimating task times, critical path generation in Excel and Project, project cost justification in Excel, SPC and acceptance sampling for machine acceptance, project analysis via simulation, and management of personnel, teams, subcontractors and vendors. Case studies are utilized to demonstrate core concepts and dynamic scheduling.
Integrated Facilities Management involves understanding processes and tools needed to successfully manage building systems, functions, and personnel in any type of building, complex of buildings, or physical environment. Course covers topics in facilities management ranging from routine maintenance to complex systems interactions and financial decisions. Students learn to assess issues of safety, human comfort, sustainable use of resources, building and infrastructure life cycles, and company objectives and develop solutions based on studying real problems in facilities management organizations.
General approaches for estimating construction costs are covered. Several commercially available software packages are introduced. Emphasis is on acquiring the knowledge required to develop cost estimates for construction, renovation and maintenance projects for buildings, facilities and equipment.
Each year, industrial companies are affected by critical incidents which cause disruption in operations and significant monetary losses due to repairs and/or lost revenue. Whether it is a small fire, an extended electrical outage or an incident of a more serious magnitude, all company stakeholders - from the board of directors to the employees to the customers - are impacted. The key to understanding the complexities of industrial resiliency lies in focusing on the issues of preparedness: prevention, mitigation, and control. This course is designed to prepare the student for managing a critical incident, including understanding risk and business impact, emergency preparedness, contingency planning and damage control.
Course covers the application of proven management principles and operational practices. Learn how high performance companies create a competitive advantage despite economic challenges and a transitional customer base. Factors covered include strategy deployment, financial analysis, new product development, quality, customer service, and attaining market leadership. Case studies illustrate variable impacts on business situations.
Maintaining and managing buildings and facilities is a challenging, multifaceted occupation. Facilities are becoming smarter and greener as the goals of energy conservation and occupant comfort have shifted to include environmental responsibility. This course examines facility operations and management (O&M) related to sustainability and green technology, with an emphasis on the U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) requirements, rating system, and the process for properties to apply for certification as a resource-efficient operation.
This course will introduce students to key aspects of HR management, including legal requirements for all normal HR activities as well as techniques for dealing with employees when hiring, evaluating, promoting and terminating.
This course covers electronic commerce and its applications in industrial organizations. Topics covered include the role of e-commerce in a firm's business operations and competitiveness, e-commerce infrastructure technologies, e-commerce applications in product development and marketing, and effective use of e-commerce in supply chain management and collaboration. Innovations in business models, marketing strategies and supply chain processes driven by web-enabled applications are included. Social and ethical challenges posed by the widespread adoption of e-commerce will also be studied.
This course covers transportation practices and strategies for the 21st century. The role and importance of transportation in the economy and its relationship to the supply chain will be covered in detail. Transportation modes - trucks, rail, air, and water - will be examined for both domestic and global transportation. Costing and pricing strategies and issues will be discussed as well as security issues in domestic and international transportation.
This course covers sales and operations planning (S&OP) processes, objectives, and procedures utilized by leading global supply chain companies. Key elements of the S&OP process are explained, including demand plans, forecasts, and capacity plans. Students also learn how to develop, maintain, and manage supplier relationships (SRM) and how companies use customer relationship management (CRM) tools to enhance business relationships.
This course provides an overview of current and emerging chemical processes employed in the energy, food, drug, and plastics sectors. Current and future impacts of various manufacturing processes on society, environment, and sustainability are covered as are issues related to OSHA, EPA, FDA, USDA, and other regulatory systems. The various implications of recovery and reuse are explored as well as new non-polluting, zero-emissions processes and technologies. Students will gain an appreciable understanding of "how it's made"and the range of chemical processes and related technical challenges involved in manufacturing. A background in chemistry is not required.
This course focuses on the Fourth Industrial Revolution (Industry 4.0) and the major manufacturing technologies that must be integrated and implemented effectively in a timely manner in order to sustain a competitive advantage. Advances in product design, breakthrough achievements in materials used in products, and reduced time to market require the use of advanced industrial processes to maximize customer service and company profitability. Topics include: shaping the fourth industrial revolution, manufacturing 4.0, manufacturing economics, manufacturing analytics, supply chain 4.0, quality 4.0, Industrial Internet of Things (IIoT), future of manufacturing skills, advanced manufacturing (digital, automated, additive), AI, augmented reality, modern manufacturing leadership, and change management.
Creating an organization-wide culture of quality and performance is critical to managing the unique demands of a food processing company. Learn how to develop, manage, and improve food production processes, implement lean principles to eliminate waste and improve yields, and measure operational performance. Topics covered include budgeting and financial tools, introducing new food products and processes, Total Quality Management (TQM), evaluation and management of supply chain activities, and strategy deployment techniques.
Lean principles are the primary continuous improvement tool utilized in the manufacturing industry. In this course, students learn how to evaluate process performance, starting with lean thinking to determine exactly what is needed to achieve the desired outcome of a process and the value it creates. With lean thinking comes the identification of waste, which can take many forms including organizational policies and practices which may not provide any value to the customer. The next step is to map the process as it is in its current state so that potential future state improvements are more easily identified and serve as a catalyst toward achieving process perfection. Diagnostic tools are introduced, both qualitative and quantitative in nature, to help reveal the potential of the process.
Technology changes how companies operate, impacting internal processes and how comprehensive manufacturing solutions are established to serve customer needs. The challenge lies in connecting independent processes into systems that are reliable, self-adjusting, and communicate in real time. Internal systems must successfully blend hardware, software, sensors and codes, and integrate new technologies to automate, assess and control manufacturing operations. The goal is to achieve a transparent system with faster processing times, fewer interruptions and a more continuous flow, resulting in competitive advantage throughout the entire value stream. This course covers interconnection, optimization and automation of processes to achieve competitive advantage in manufacturing operations.
Today's leading edge manufacturing environment has advanced technology and systems embedded throughout its framework. This course exposes students to the functional aspects and capabilities of a 5-axis CNC machining center, and the processes involved in taking a machined part from prototype to production. This state-of-the-art technology is used by high-production companies around the world to create complex, precision-machined parts and products with tight tolerances and extreme repeatability. Students gain experience using SinuTrain simulators and hands-on learning on a 5-axis CNC machine. Coverage includes CNC programming and use of IIoT system technologies embedded in the machine to obtain internal diagnostics with real time data and connect with internal departments, suppliers and customers. Prior completion of a course in manufacturing processes highly recommended. First course in a two-course sequence.
This course covers the full range of activities involved in the supply chain. This includes management tools for optimizing of supply chains, relationships with other parts of the organization, in-house versus third party approaches, and suitable performance measurements. Topics covered include: Warehouse Management Systems (WMS), Transportation Management Systems (TMS), Advanced Planning and Scheduling Systems (APS), as well as cost benefit analysis to determine the most appropriate approach.
This course covers warehouse layout and usage based on product requirements such as refrigeration, hazardous material, staging area, and value added activities. Processes covered include receiving, put-away, replenishment, picking and packing. The requirement for multiple trailer/rail cars loading and unloading is considered as well as equipment needed for loading, unloading, and storage. Computer systems for managing the operations are reviewed. Emphasis is on material handling from warehouse arrival through warehouse departure.
Purchasing responsibilities, processes, and procedures are included. Topics covered include: supplier selection and administration, qualification of new suppliers, preparing purchase orders, negotiating price and delivery, strategic customer/vendor relationships, and resolution of problems. All aspects of Supplier Relation Management (SRM) are covered.
Internationalization of industry requires special expertise and knowledge, which must be taken into consideration throughout all interactions with overseas companies either as customers or suppliers. Topics covered include custom clearance, bonded shipping, international shipping options, import financing and letters of credit, customer regulations, insurance, import duties and trade restrictions, exchange rates, and dealing with different cultures.
Provides an overview of manufacturing, logistics and supply chain management (SCM) information systems and software packages, as well as practical tools and techniques for effective decision making. Emphasis on the importance of accurate and timely data, efficient business processes, and utilizing state-of-the-art information tools and technologies. Students gain hands-on experience using a modern ERP system to understand the features, functionality, and end-to-end dependencies of the core ERP modules used in an enterprise.
This course covers a suite of application protocols known as Voice over IP (VoIP). It describes important protocols within that suite including RTP, SDP, MGCP and SIP, and the architecture of various VoIP installations including on-net to on-net, on-net to PSTN, and Inter-domain scenarios. The functions of the Network Elements that play significant roles in this architecture will be defined. Examples of network elements that are currently available as products will be examined.
Examines the concept of sustainability and its application in the industrial environment. Identifies underlying stresses on natural and human environments and the resultant problems for business and society including legal, ethical, and political issues related to sustainability. Global warming, peak oil, and commodity pricing are considered as indicators of the need for improvements in sustainability. Industrial ecology will be discussed as well as strategies for developing sustainable practices in manufacturing, power generation, construction, architecture, logistics, and environmental quality. Coverage includes case studies on businesses that have developed successful sustainability programs.
This course explores the limitations in supply and the need for sustainable use of carbon and non-carbon-based materials such as oil, minerals, food, water, and other natural resources used by industry. Limitations in the global availability of such resources pose challenges to industry which will require careful consideration and planning to ensure continued prosperity for current and future generations. Course will cover strategies and options to mitigate anticipated shortages and optimize the use of non-renewable natural resources, review of fuel and raw material pricing, and cost/benefit analysis of sustainable development proposals. Technical analyses will be presented during class discussions, but a technical background is not required.
Carbon-based fuels are a limited resource and within decades will be in very short supply. Associated energy costs will increase and industry will be required to incorporate alternate fuels and/or power sources, such as uranium (for nuclear power), hydroelectric, geothermal, wind, wave, solar, etc. This course presents such energy options and explores the anticipated impact on industry.
This course allows the student to research and report on an industrial sustainability issue of interest and relevance to their career objectives. Topics may touch on industrial ecology, ethics, regulations, environment, resource use, alternative manufacturing methods, facilities, logistics, etc. This is the fourth course in a specialization in Industrial Sustainability.
Introduces various forms of entrepreneurship with emphasis towards industrial organizations. Provides helpful tools for developing and implementing significant "game-changing" actions to effect change within an existing organization or develop a new business venture. Students complete an opportunity assessment (OPASS) project wherein they identify, evaluate, and develop an approach for a "real-life" business and produce a formal report and presentation.
Undergraduate research.
Special projects.
Team research experience; topic determined by supervising faculty.
Beginning with productivity and productivity improvement, students learn Industrial Engineering concepts and are trained to apply them to optimize engineering and operational tasks. Topics covered include time and motion studies, work measurement, ergonomics, value stream engineering, and value stream mapping. Data envelopment analysis and analytical hierarchy process are implemented, using Excel to optimize operations. Plant location selection and layout are covered. Students learn to optimize project selection using ROI and other metrics and execute projects using Microsoft Project. An open source ERP system is used to illustrate MRP and other planning functions. The application of statistical methods, including hypothesis testing, to improve performance is also covered.
Introduces the full range of technologies involved in construction of both new and modified facilities, including steel, concrete and timber construction as well as supporting specialties such as HVAC, electrical, plumbing, etc. The interactions between the various construction trades will be covered along with the role of the architects and engineers.
This course introduces accounting information used for decision-making within a business enterprise. Financial reporting, financial terminology, and the three major financial statements are reviewed. Product costing, short-term and long-term decision-making, budgeting, control of operations, and performance evaluations are covered as are cost-volume-profit relationships, relevant costs, flexible budgets, and standard costs.
Fundamentals of inventory control including inventory classifications, i.e. raw materials, work-in-process (WIP) and finished goods. Topics include inventory record keeping, inventory turnover, the 80/20 (or ABC) approach, external and internal lead times, excess/obsolete inventory, and inventory controls. Material Resource Planning (MRP) are included.
Supervision and management practices are key to all components and sectors of industry. People are the key resources and their effective use is critical to a successful operation. As companies move to become high performance organizations, traditional management tools and techniques have to be reviewed and reconsidered. Skills covered include motivation, developing consensus, conflict avoidance and negotiations. Group dynamics along with handling of individual workers is critical.
This course covers project management in the PMP framework and provides a structured approach to managing projects using Microsoft Project and Excel. Coverage includes creation of key project management charts (Gantt, Pert, CPM, timelines and resource utilization), basic statistics used in estimating task times, critical path generation in Excel and Project, project cost justification in Excel, SPC and acceptance sampling for machine, project analysis via simulation, and management of personnel, teams subcontractors and vendors. Case studies are utilized to demonstrate core concepts and dynamic scheduling.
Integrated Facilities Management involves understanding processes and tools needed to successfully manage building systems, functions, and personnel in any type of building, complex of buildings, or physical environment. Course covers topics in facilities management ranging from routine maintenance to complex systems interactions and financial decisions. Students learn to assess issues of safety, human comfort, sustainable use of resources, building and infrastructure life cycles, and company objectives and develop solutions based on studying real problems in facilities management organizations.
Each year industrial companies are affected by critical incidents which cause disruptions in operations and significant monetary losses due to repairs and/or lost revenue. Whether it is a small fire, an extended electrical outage or an incident of a more serious magnitude, all company stakeholders-from the board of directors to the employees to the customers -are impacted. The key to understanding the complexities of industrial resiliency lies in focusing on the issues of preparedness: prevention, mitigation and control. This course is designed to prepare the student for managing a critical incident, including understanding risk and business impact, emergency preparedness, contingency planning and damage control.
Course covers the application of proven management principles and operational practices. Learn how high performance companies create a competitive advantage despite economic challenges and a transitional customer base. Factors covered include strategy deployment, financial analysis, new product development, quality, customer service, and attaining market leadership. Case studies illustrate variable impacts on business situations.
Management Information Systems (MIS) are utilized in all industrial sectors to manage, analyze, and optimize operational processes. This course examines the integration of MIS for a range of operational activities, including production scheduling, inventory control, purchasing, shipping, and invoicing. Students will be exposed to the theory of MIS by reviewing case studies and successful applications. Students learn how to build spreadsheet models for multiple business problems using linear programming (LP) and integer programming (IP) and perform regression analysis and basic time series forecasting. A variety of Microsoft Excel tools are introduced.
Maintaining and managing buildings and facilities is a challenging, multifaceted occupation. Facilities are becoming smarter and greener as the goals of energy conservation and occupant comfort have shifted to include environmental responsibility. This course examines facility operations and management (O&M) related to sustainability and green technology, with an emphasis on the U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) requirements, rating system, and the process for properties to apply for certification as a resource-efficient operation.
This course covers transportation practices and strategies for the 21st century. The role and importance of transportation in the economy and its relationship to the supply chain will be covered in detail. Transportation modes -- trucks, rail, air, and water -- will be examined for both domestic and global transportation. Costing and pricing strategies and issues will be discussed as well as security issues in domestic and international transportation.
This course provides an overview of current and emerging chemical processes employed in the energy, food, drug, and plastics sectors. Current and future impacts of various manufacturing processes on society, environment, and sustainability are covered as are issues related to OSHA, EPA, FDA, USDA, and other regulatory systems. The various implications of recovery and reuse are explored as well as new non-polluting, zero-emissions processes and technologies. Students will gain an appreciable understanding of "how it's made"and the range of chemical processes and related technical challenges involved in manufacturing. A background in chemistry is not required.
This course focuses on the Fourth Industrial Revolution (Industry 4.0) and the major manufacturing technologies that must be integrated and implemented effectively in a timely manner in order to sustain a competitive advantage. Advanced in product design, breakthrough achievements in materials used in products, and reduced time to market require the use of advanced industrial processes to maximize customer service and company profitability. Topics include: shaping the fourth industrial revolution, manufacturing 4.0, manufacturing economics, manufacturing analytics, supply chain 4.0, quality 4.0, Industrial Internet of Things (IIoT), future of manufacturing skills, advanced manufacturing (digital, automated, additive), AI, augmented reality, modern manufacturing leadership, and change management.
Creating an organization-wide culture of quality and performance is critical to managing the unique demands of a food processing company. Learn how to develop, manage, and improve food production processes, implement lean principles to eliminate waste and improve yields, and measure operational performance. Topics covered include budgeting and financial tools, introducing new food products and processes, Total Quality Management (TQM), evaluation and management of supply chain activities, and strategy deployment techniques.
Technology changes how companies operate, impacting internal processes and how comprehensive manufacturing solutions are established to serve customer needs. The challenge lies in connecting independent processes into systems that are reliable, self-adjusting, and communicate in real time. Internal systems must successfully blend hardware, software, sensors and codes, and integrate new technologies to automate, assess and control manufacturing operations. The goal is to achieve a transparent system with faster processing times, fewer interruptions and a more continuous flow, resulting in competitive advantage throughout the entire value stream. This course covers interconnection, optimization and automation of processes to achieve competitive advantage in manufacturing operations.
Today's leading edge manufacturing environment has advanced technology and systems embedded throughout its framework. This course exposes students to the functional aspects and capabilities of a 5-axis CNC machining center, and the processes involved in taking a machined part from prototype to production. This state-of-the-art technology is used by high-production companies around the world to create complex, precision-machined parts and products with tight tolerances and extreme repeatability. Students gain experience using SinuTrain simulators and hands-on learning on a 5-axis CNC machine. Coverage includes CNC programming and use of IIoT system technologies embedded in the machine to obtain internal diagnostics with real time data and connect with internal departments, suppliers and customers. Prior completion of a course in manufacturing processes highly recommended. First course in a two-course sequence.
This course covers the full range of activities involved in the supply chain. This includes management tools for optimizing of supply chains, relationships with other parts of the organization, in-house versus third party approaches, and suitable performance measurements. Topics covered include Warehouse Management Systems (WMS), Transportation Management Systems (TMS), Advanced Planning and Scheduling Systems (APS) as well as cost benefit analysis to determine the most appropriate approach.
This course covers warehouse layout and usage based on product requirement such as refrigeration, hazardous material, staging area, and value added activities. Processes covered include receiving, put-away, replenishment, picking, and packing. The requirement for multiple trailer/rail car loading and unloading is considered as well as equipment needed for loading, unloading and storage. Computer systems for managing the operations are reviewed. Emphasis is on material handling from warehouse arrival through warehouse departure.
Purchasing responsibilities, processes, and procedures are included. Topics covered include: supplier selection and administration, qualification of new suppliers, preparing purchase orders, negotiating price and delivery, strategic customer/vendor relationships, and resolution of problems. All aspects of Supplier Relation Management (SRM) are covered.
Internationalization of industry requires special expertise and knowledge, which must be taken into consideration throughout all interactions with overseas companies either as customers or suppliers. Topics covered include custom clearance, bonded shipping, international shipping options, import financing and letters of credit, customer regulations, insurance, import duties and trade restrictions, exchange rates, and dealing with different cultures.
Organizational involvement in international business activities -- whether sourcing material and designs, expanding product sales and reach, or creating economies of scale and scope -- requires an understanding of various factors in international finance, marketing, and strategy. This course brings together these disciplines to explore financial factors that may add or transform risks, the necessary adjustments in the creation of global marketing strategy, and the strategies for creating and preserving a competitive advantage in the international arena.
Provides an overview of manufacturing, logistics and supply chain management (SCM) information systems and software packages, as well as practical tools and techniques for effective decision making. Emphasis on the importance of accurate and timely data, efficient business processes, and utilizing state-of-the-art information tools and technologies. Students gain hands-on experience using a modern ERP system to understand the features, functionality, and end-to-end dependencies of the core ERP modules used in an enterprise.
The range of supply chain strategies to be considered when assessing a firm's internal and external supply chain network. Strategies involved in the end-to-end supply chain including product life cycle management (PLM), inventory optimization, network design optimization, management tools for optimizing supply chains, relationships with other parts of the organization, in-house versus third-party approaches, and suitable performance measurements.
Organizations of all types employ rigorous analysis of vast amounts of internal and external data to improve the quality of decision making. This course prepares students to define and organize data, perform exploratory analysis, and select and implement analytical models, with a focus on applications in the areas of operations and marketing. Excel plugins, statistical packages (R, SAS or SPSS), and business intelligence products like Tableau will be used extensively for modeling. The course covers descriptive and inferential statistics, principles of design of experiments and analysis of variance (ANOVA), and supervised and unsupervised learning methods including regression, classification and clustering. Prior completion of a course in elementary probability and statistics highly recommended.
Examines the concept of sustainability and its application in the industrial environment. Identifies underlying stresses on natural and human environments and the resultant problems for business and society including legal, ethical, and political issues related to sustainability. Global warming, peak oil, and commodity pricing are considered as indicators of the need for improvements in sustainability. Industrial ecology will be discussed as well as strategies for developing sustainable practices in manufacturing, power generation, construction, architecture, logistics, and environmental quality. Coverage includes case studies on businesses that have developed successful sustainability programs.
This course explores the limitations in supply and the need for sustainable use of carbon and non-carbon-based materials such as oil, minerals, food, water, and other natural resources used by industry. Limitations in the global availability of such resources pose challenges to industry which will require careful consideration and planning to ensure continued prosperity for current and future generations. Course will cover strategies and options to mitigate anticipated shortages and optimize the use of non-renewable natural resources, review of fuel and raw material pricing, and cost/benefit analysis of sustainable development proposals. Technical analyses will be presented during class discussions, but a technical background is not required.
Carbon-based fuels are a limited resource and within decades will be in very short supply. Associated energy costs will increase and industry will be required to incorporate alternate fuels and/or power sources, such as uranium (for nuclear power), hydroelectric, geothermal, wind, wave, solar, etc. This course presents such energy options and explores the anticipated impact on industry.
This course allows the student to research and report on an industrial sustainability issue of interest and relevance to their career objectives. Topics may touch on industrial ecology, ethics, regulations, environment, resource use, alternative manufacturing methods, facilities, logistics, etc. This is the fourth course in a specialization in industrial sustainability.
Special project.
Independent study and project. Permission of instructor required.