ENVE 201
Earth Environ Sci
This course introduces students to the fundamentals of earth and environmental science. Topics include: earth systems science; geologic processes, soils, and minerals; global tectonics and earthquakes; environmental systems and biogeochemical cycles; land resources and agriculture; renewable and nonrenewable energy; water resources and water pollution; air pollution; solid waste; climate alteration and global climate change; and environmental sustainability.
Prerequisite(s): CHEM 122 or CHEM 124
Lecture: 3 Lab: 0 Credits: 3

ENVE 401
Introduction to Water Resources Engineering
The theory and practice involved in planning and design of water systems are introduced in this course. Topics include hydraulics, hydrology, storm water management, water supply distribution, and waste water collection and transport systems. Hydraulics includes flow of fluids through orifices, weirs, venturi meters, laminar and turbulent flow in closed conduits, open channel flow. Hydrology includes rainfall, runoff, and collection and distribution of water. Model analysis using the principles of dimensional analysis and software applications.
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)

ENVE 402
Introduction to Environmental Engineering and Sustainable Design
This course provides an overview of how environmental engineers integrate biological, chemical, and physical sciences with engineering design methods to develop solutions to environmental problems. Topics include air pollution, water pollution, solid waste management, fate and transport of contaminants, pollution prevention, environmental regulation, risk assessment, climate science, and sustainability assessment. Focuses on applications and actual design practice.
Prerequisite(s): CHEM 124 and MATH 152
Lecture: 3 Lab: 0 Credits: 3
Satisfies: CAE Design Course (D)

ENVE 403
Introduction to Occupational and Environmental Health and Safety
This course is intended to introduce students to the basics of occupational and environmental safety and health. Topics include fundamental principles in industrial hygiene and occupational and environmental safety based in the anticipation, recognition, evaluation, and control of chemical, biological, physical, and ergonomic hazards that can be encountered in the workplace and other settings. Applications include indoor air pollution control, natural disaster mitigation, and infectious disease transmission and control. Understanding of basic chemistry and elementary statistics is recommended.
Lecture: 3 Lab: 0 Credits: 3

ENVE 404
Water and Wastewater Engineering
Water quality and water supply issues make up this course including the physical, chemical, and biological processes involved in water treatment. Process design, operations, and management are also considered.
Lecture: 3 Lab: 0 Credits: 3

ENVE 463
Introduction to Air Pollution Control
Air pollution sources and characteristics of source emissions, atmospheric reactions, effects of pollutants, and techniques of emission control are presented in this course. Legal and administrative aspects of air pollution control are also described.
Lecture: 3 Lab: 0 Credits: 3

ENVE 476
Engineering Control of Industrial Hazards
Design of control systems to enhance occupational safety and health; how to recognize and control existing or potential safety and health hazards.
Prerequisite(s): ENVE 426*, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

ENVE 485
Industrial Ecology
This course provides an overview of industrial ecology, the study of the science and engineering relationships between cultural and ecological systems, and how those relationships can be managed to achieve a more sustainable economy. Because it is an interdisciplinary field, topics include technology (science and engineering), public policy and regulatory issues, and business administration.
Lecture: 3 Lab: 0 Credits: 3

ENVE 497
Special Project
Special design project under individual supervision of instructor. Consent of instructor is required.
Credit: Variable

ENVE 501
Environmental Chemistry
Chemical processes in environmental systems with an emphasis on equilibrium conditions in aquatic systems. Processes examined include acid-base, dissolution precipitation, air-water exchange, and oxidation-reduction reactions. Methods presented for describing chemical speciation include analytical and graphical techniques as well as computer models.
Lecture: 3 Lab: 0 Credits: 3
ENVE 503
Introduction to Occupational and Environmental Health and Safety
This course is intended to introduce students to the basics of occupational and environmental safety and health. Topics include fundamental principles in industrial hygiene and occupational and environmental safety based in the anticipation, recognition, evaluation, and control of chemical, biological, physical, and ergonomic hazards that can be encountered in the workplace and other settings. Applications include indoor air pollution control, natural disaster mitigation, and infectious disease transmission and control.
Lecture: 3 Lab: 0 Credits: 3

ENVE 506
Chemodynamics
Processes that determine the fate and transport of contaminants in the environment. Upon successful completion of this course, students should be able to formulate creative, comprehensive solutions to transport problems, critically evaluate proposed solutions to transport problems, and acquire and integrate new information to build on these fundamentals.
Lecture: 3 Lab: 0 Credits: 3

ENVE 513
Biotechnological Processes in Environmental Engineering
Fundamentals and applications of biological mixed culture processes for air, water, wastewater, and hazardous waste treatment. Topics include biochemical reactions, stoichiometry, enzyme and microbial kinetics, detoxification of toxic chemicals, and suspended growth and attached growth treatment processes. The processes discussed include activated sludge process and its modifications, biofilm processes including trickling filters and biofilters, nitrogen and phosphorous removal processes, sludge treatment processes including mesophilic and thermophilic systems, and natural systems including wetlands and lagoons.
Lecture: 3 Lab: 0 Credits: 3

ENVE 528
Modeling of Environmental Systems
To introduce students to mathematical modeling as a basic tool for problem solving in engineering and research. Environmental problems will be used as examples to illustrate the procedures of model development, solution techniques, and computer programming. These models will then be used to demonstrate the application of the models including simulation, parameter estimation, and experimental design. The goal is to show that mathematical modeling is not only a useful tool but also an integral part of process engineering.
Lecture: 3 Lab: 0 Credits: 3

ENVE 542
Physiochemical Processes in Environmental Engineering
Fundamentals and applications of physicochemical processes used in air, water, wastewater, and hazardous waste treatment systems. Topics include reaction kinetics and reactors, particle characterization, coagulation and flocculation, sedimentation, filtration, membrane separation, adsorption, and absorption.
Prerequisite(s): ENVE 404
Lecture: 3 Lab: 0 Credits: 3

ENVE 551
Industrial Waste Treatment
Industrial waste sources and characteristics, significance of industrial waste as environmental pollutants; applications of standard and special treatment processes including physical, chemical, and biological systems.
Prerequisite(s): ENVE 513* with min. grade of C or ENVE 542* with min. grade of C. An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

ENVE 556
Design of Environmental Engineering Processes
Design of water and wastewater treatment systems. System economics and optimal design principles.
Prerequisite(s): ENVE 513* with min. grade of C or ENVE 542* with min. grade of C. An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

ENVE 558
Indoor Air Pollution
Indoor air pollution sources, indoor pollutant levels, monitoring instruments and designs, and indoor pollution control strategies; source control, control equipment and ventilation; energy conservation and indoor air pollution; exposure studies and population time budgets; effects of indoor air population; risk analysis; models for predicting source emission rates and their impact on indoor air environments.
Lecture: 3 Lab: 0 Credits: 3

ENVE 570
Air Pollution Meteorology
Physical processes associated with the dispersion of windborne materials from industrial and other sources. Atmospheric motion including turbulence and diffusion, mathematical models, and environmental impact assessment.
Lecture: 3 Lab: 0 Credits: 3

ENVE 576
Industrial Waste Treatment
Industrial waste sources and characteristics, significance of industrial waste as environmental pollutants; applications of standard and special treatment processes including physical, chemical, and biological systems.
Prerequisite(s): ENVE 513* with min. grade of C or ENVE 542* with min. grade of C. An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

ENVE 577
Design of Air Pollution Control Devices
Principles and modern practices employed in the design of engineering systems for the removal of pollutants. Design of control devices based on physical and chemical characteristics of polluted gas streams.
Lecture: 3 Lab: 0 Credits: 3

ENVE 578
Physical and Chemical Processes for Industrial Gas Cleaning
Application of physical and chemical processes in the design of air treatment systems; fundamentals of standard and special treatment processes.
Lecture: 3 Lab: 0 Credits: 3
ENVE 580
Hazardous Waste Engineering
Sources and characteristics of hazardous wastes, legal aspects of hazardous waste management, significance of hazardous wastes as air, water, and soil pollutants. Principles and applications of conventional and specialized hazardous waste control technologies.
Prerequisite(s): ENVE 506* with min. grade of C, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

ENVE 591
Research and Thesis M.S.
Graduate research.
Credit: Variable

ENVE 597
Special Problems
Independent study and project. (Variable credit)
Credit: Variable

ENVE 691
Research and Thesis Ph.D.
Graduate research.
Credit: Variable