MECHL, MTRLS AND ARSPC ENGRG (MMAE)

MMAE 100
Introduction to the Profession
Introduces the student to the scope of the engineering profession and its role in society, develops a sense of professionalism in the student, and provides a mechanism for regular academic advising. Provides integration with other first-year courses. Applications of mathematics to engineering. Emphasis is placed on the development of professional communications and teamwork skills.
Lecture: 2 Lab: 0 Credits: 3
Satisfies: Communications (C)

MMAE 200
Statics
Prerequisite(s): (CS 104* or CS 105* or CS 115*) and MATH 152* and PHYS 123. An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 202
Mechanics of Solids
Prerequisite(s): PHYS 123 and MATH 152* and (CS 104* or CS 105* or CS 115*). An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 232
Design for Innovation
Design and development of mechanical systems. The design process, isometric sketching, engineering drawings, CAD, sustainable design, whole-system design and lifecycle thinking, design for product lifetime, lightweighting, technical writing, bio-inspired design process, mechanism and linkage design, actuators, and engineering and law. Team-based design and build projects focusing on sustainable design techniques, bio-inspired locomotion, and mechatronics.
Prerequisite(s): (CS 104 or CS 105 or CS 115) and MMAE 202*. An asterisk (*) designates a course which may be taken concurrently.
Lecture: 1 Lab: 3 Credits: 3
Satisfies: Communications (C)

MMAE 302
Advanced Mechanics of Solids
Prerequisite(s): MMAE 202 and MATH 252 and MATH 251
Lecture: 3 Lab: 0 Credits: 3

MMAE 304
Mechanics of Aerostructures
Prerequisite(s): MMAE 202 and MATH 252 and MATH 251
Lecture: 3 Lab: 0 Credits: 3

MMAE 305
Dynamics
Prerequisite(s): MATH 252* and (MMAE 202 or CAE 286). An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 311
Compressible Flow
Prerequisite(s): MMAE 320 and MMAE 313
Lecture: 3 Lab: 0 Credits: 3

MMAE 312
Aerodynamics of Aerospace Vehicles
Analysis of aerodynamic lift and drag forces on bodies. Potential flow calculation of lift on two-dimensional bodies; numerical solutions; source and vortex panels. Boundary layers and drag calculations. Aerodynamic characteristics of airfoils; the finite wing.
Prerequisite(s): MMAE 320 and MMAE 313 and MMAE 311*. An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3
MMAE 313
Fluid Mechanics
Basic properties of fluids in motion. Langrangian and Eulerian viewpoints, materials derivative, streamlines, etc. Continuity, energy, and linear and angular momentum equations in integral and differential forms. Integration of equations for one-dimensional forms and application to problems. Incompressible viscous flow; Navier-Stokes equations, parallel flow, pipe flow, and the Moody diagram. Introduction to laminar and turbulent boundary layers and free surface flows.
Prerequisite(s): MMAE 202 and MATH 252* and MATH 251 and MMAE 320*. An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 315
Aerospace Laboratory I
Basic skills for engineering research are taught, which include: analog electronic circuit analysis, fundamentals of digital data acquisition, measurements of pressure, temperature, flow rate, heat transfer, and static forces and moments; statistical data analysis.
Prerequisite(s): PHYS 221 and MMAE 350* and MMAE 311* and MMAE 313. An asterisk (*) designates a course which may be taken concurrently.
Lecture: 2 Lab: 3 Credits: 4
Satisfies: Communications (C)

MMAE 319
Mechanical Laboratory I
Basic skills for engineering research are taught, which include: analog electronic circuit analysis; fundamentals of digital data acquisition; measurements of pressure, temperature, flow rate, heat transfer, and static forces and moments; and statistical data analysis.
Prerequisite(s): MMAE 313 and MMAE 323* and PHYS 221, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 3 Credits: 4
Satisfies: Communications (C)

MMAE 320
Thermodynamics
Introduction to thermodynamics including properties of matter; First Law of Thermodynamics and its use in analyzing open and closed systems; limitations of the Second Law of Thermodynamics; entropy.
Prerequisite(s): CHEM 124 or CHEM 122
Lecture: 3 Lab: 0 Credits: 3

MMAE 321
Applied Thermodynamics
Analysis of thermodynamic systems including energy analysis; analysis and design of power and refrigeration cycles; gas mixtures and chemically reacting systems; chemical equilibrium; combustion and fuel cells.
Prerequisite(s): MMAE 320 and MMAE 313*, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 323
Heat and Mass Transfer
Basic laws of transport phenomena, including: steady-state heat conduction; multi-dimensional and transient conduction; forced internal and external convection; natural convection; heat exchanger design and analysis; fundamental concepts of radiation; shape factors and network analysis; diffusive and convective mass transfer; phase change, condensation and boiling.
Prerequisite(s): MMAE 320 and MMAE 313
Lecture: 3 Lab: 0 Credits: 3

MMAE 332
Design of Machine Elements
Students will gain an understanding of the analysis of basic elements used in machine design. These include the characteristics of gears, gear trains, bearings, shafts, keys, mechanical springs, brakes and clutches, and flexible elements.
Prerequisite(s): MMAE 302 or MMAE 304 and MMAE 232*, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 350
Computational Mechanics
Explores the use of numerical methods to solve engineering problems in solid mechanics, fluid mechanics and heat transfer. Topics include matrix algebra, nonlinear equations of one variable, systems of linear algebraic equations, nonlinear equations of several variables, classification of partial differential equations in engineering, the finite difference method, and the finite element method. Same a MATH 350.
Prerequisite(s): MATH 251 and MATH 252* and MMAE 202 and (CS 104 or CS 105 or CS 115), An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 352
Aerospace Propulsion
Analysis and performance of various jet and rocket propulsive devices. Foundations of propulsion theory. Design and analysis of inlets, compressors, combustion chambers, and other elements of propulsive devices. Emphasis is placed on mobile power plants for aerospace applications.
Prerequisite(s): MMAE 311
Lecture: 3 Lab: 0 Credits: 3

MMAE 362
Physics of Solids
Prerequisite(s): MS 201
Lecture: 3 Lab: 0 Credits: 3
MMAE 365
Structure and Properties of Materials I
Crystal structures and structure determination. Crystal defects, intrinsic and extrinsic properties, diffusion, kinetics of transformations, evolution and classification of microstructures.
Prerequisite(s): MMAE 320* and MS 201, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 370
Materials Laboratory I
Introduction to materials characterization techniques including specimen preparation, metallography, optical and scanning electron microscopy, temperature measurement, data acquisition analysis and presentation.
Prerequisite(s): MMAE 365* or MMAE 371*, An asterisk (*) designates a course which may be taken concurrently.
Credit: Variable

MMAE 372
Aerospace Materials Lab
Mechanical behavior and microstructural characterization of aerospace materials including advanced metal alloys, polymers, ceramics, and composites. Introduction to mechanical testing techniques for assessing the properties and performance of aerospace materials. Evaluation of structural performance in terms of materials selection, processing, service conditions, and design.
Prerequisite(s): MMAE 202 and MS 201
Lecture: 3 Lab: 3 Credits: 3
Satisfies: Communications (C)

MMAE 373
Instrumentation and Measurements Laboratory
Basic skills for engineering research are taught, which include: analog electronic circuit analysis, fundamentals of digital data acquisition and statistical data analysis. Laboratory testing methods including solid mechanics: tension, torsion, hardness, impact, toughness, fatigue and creep. Design of experiments.
Prerequisite(s): PHYS 221
Lecture: 2 Lab: 3 Credits: 4
Satisfies: Communications (C)

MMAE 410
Aircraft Flight Mechanics
Prerequisite(s): MMAE 443* and MMAE 312, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 411
Spacecraft Dynamics
Prerequisite(s): MMAE 443* and MMAE 305 and MATH 252, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 412
Spacecraft Design I
Spacecraft systems design including real world mission analysis and orbit design, system engineering, launch vehicle requirements, attitude determination and control, propulsion, structural design, power systems thermal management, and telecommunications. Semester-long project is focused on the integration of multiple systems into a coherent spacecraft system to achieve specific mission requirements. (1-6-3)
Prerequisite(s): MMAE 411
Lecture: 2 Lab: 1 Credits: 3
Satisfies: Communications (C)

MMAE 414
Aircraft Design I
Aircraft design including aerodynamic, structural, and power plant characteristics to achieve performance goals. Focus on applications ranging from commercial to military and from manpowered to high-speed to long-duration aircraft. Semester project is a collaborative effort in which small design groups complete the preliminary design cycle of an aircraft to achieve specific design requirements.
Prerequisite(s): (MMAE 302 or MMAE 304) and MMAE 312 and MMAE 410* and MMAE 352, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 2 Lab: 1 Credits: 3
Satisfies: Communications (C)

MMAE 415
Aerospace Laboratory II
Advanced skills for engineering research are taught, which include experiments with digital electronic circuit analysis, dynamic data acquisition techniques, fundamentals of fluid power system design, GPS and inertial guidance systems, air-breathing propulsion, and fly-by-wire control.
Prerequisite(s): (MMAE 315 or MMAE 319) and MMAE 443*, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 2 Lab: 3 Credits: 4
Satisfies: Communications (C)

MMAE 418
Fluid Power for Aerospace Applications
Basic principles and concepts needed for the design and troubleshooting of fluid power systems. An emphasis is placed on flight control and simulation of hydraulic systems and is extended to mobile and industrial applications.
Prerequisite(s): MMAE 313 and MMAE 443*, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 2 Lab: 3 Credits: 3
MMAE 419
Mechanical Laboratory II
Mechanical Laboratory II Laboratory testing methods in the areas of solid mechanics and control of dynamical systems: tension, torsion, bending, hardness, Charpy impact, fracture toughness, fatigue, stress measurement with strain gages and P, PD, PID control. Design of experiments.
Prerequisite(s): MMAE 443*, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 3 Credits: 4
Satisfies: Communications (C)

MMAE 425
Direct Energy Conversion
A study of various methods available for direct conversion of thermal energy into electrical energy. Introduction to the principles of operation of magneto-hydrodynamic generators, thermolectric devices, thermionic converters, fuel cells and solar cells.
Prerequisite(s): (MMAE 321 and PHYS 224) or Graduate standing
Lecture: 3 Lab: 0 Credits: 3

MMAE 426
Nuclear, Fossil-Fuel, and Sustainable Energy Systems
Prerequisite(s): MMAE 323 or CHE 302
Lecture: 3 Lab: 0 Credits: 3

MMAE 432
Design of Mechanical Systems
Capstone design courses taken during the senior year. At the end of this course, students should have a good grasp of the design process and how to integrate design with the analysis taught in previous courses. The course serves as a guide to transferring the skills that the students learned in the classroom into becoming an engineer in industry or a graduate student in the field. The focus of the class will be a team-based project conceptualized and developed by the students.
Prerequisite(s): MMAE 332
Lecture: 1 Lab: 3 Credits: 3
Satisfies: Communications (C)

MMAE 433
Design of Thermal Systems
Application of principles of fluid mechanics, heat transfer, and thermodynamics to design of components of engineering systems. Examples are drawn from power generation, environmental control, air and ground transportation, and industrial processes, as well as other industries. Groups of students work on projects for integration of these components and design of thermal systems.
Prerequisite(s): (MMAE 321 or Graduate standing) and (MMAE 323 or Graduate standing)
Lecture: 3 Lab: 0 Credits: 3
Satisfies: Communications (C)

MMAE 440
Introduction to Robotics
Classification of robots; kinematics and inverse kinematics of manipulators; trajectory planning; robot dynamics and equations of motion; position control.
Prerequisite(s): (MMAE 305 or Graduate standing) and (MMAE 315 or MMAE 319 or Graduate standing)
Lecture: 3 Lab: 0 Credits: 3

MMAE 441
Spacecraft and Aircraft Dynamics
Kinematics and dynamics of particles, systems of particles, and rigid bodies; translating and rotating reference frames; Euler angles. Aircraft longitudinal and lateral static stability; aircraft equations of motion. Spacecraft orbital dynamics; two-body problem classical orbital elements; orbital maneuvers.
Lecture: 3 Lab: 0 Credits: 3

MMAE 443
Systems Analysis and Control
Prerequisite(s): (MMAE 305 or Graduate standing) and (MATH 252 or Graduate standing)
Lecture: 3 Lab: 0 Credits: 3

MMAE 444
Design for Manufacture
The materials/design/manufacturing interface in the production of industrial and consumer goods. Material and process selection; process capabilities; modern trends in manufacturing. Life cycle engineering; competitive aspects of manufacturing; quality, cost, and environmental considerations.
Prerequisite(s): MMAE 485
Lecture: 3 Lab: 0 Credits: 3
MMAE 445
Computer-Aided Design
Prerequisite(s): (MMAE 350 or Graduate standing) and (MMAE 304 or MMAE 332 or Graduate standing)
Lecture: 3 Lab: 0 Credits: 3

MMAE 450
Computational Mechanics II
Explores the use of numerical methods to solve engineering problems in continuum mechanics, fluid mechanics, and heat transfer. Topics include partial differential equations and differential and integral eigenvalue problems. As tools for the solution of such equations, we discuss methods of linear algebra, finite difference and finite volume methods, spectral methods, and finite element methods. The course contains an introduction to the use of a commercial finite element package for the solution of complex partial differential equations.
Prerequisite(s): MMAE 350 or MATH 350
Lecture: 3 Lab: 0 Credits: 3

MMAE 451
Finite Element Methods in Engineering
Prerequisite(s): (MMAE 202 and MATH 252 and MMAE 350) or Graduate standing
Lecture: 3 Lab: 0 Credits: 3

MMAE 453
Electrified Vehicle Powertrains
This course provides insight into the electrified propulsion systems for automobiles (including plug-in electric and hybrid-electric vehicles). Students will receive the tools and practical understanding required to analyze a variety of vehicle powertrain architectures and predict the vehicle energy consumption and performance. This course will explore the power and energy requirements of driving, provide students with an understanding of the working principles of internal combustion engines, electric motors, and batteries and explore how engineers combine them to maximize efficiency and performance. Students will apply the analytical tools presented in the course to extensive test datasets from Argonne National Laboratory in order to study topics such as vehicle loads, emissions control, vehicle efficiency, the impact of electrification and future challenges in the transportation sector.
Prerequisite(s): MMAE 321 or Graduate standing
Lecture: 3 Lab: 0 Credits: 3

MMAE 461
Failure Analysis
This course provides comprehensive coverage of both the "how" and "why" of metal and ceramic failures and gives students the intellectual tools and practical understanding needed to analyze failures from a structural point of view. Its proven methods of examination and analysis enable students to reach correct, fact-based conclusions on the causes of metal failures, present and defend these conclusions before highly critical bodies, and suggest design improvements that may prevent future failures. Analytical methods presented in the course include stress analysis, fracture mechanics, fatigue analysis, corrosion science, and nondestructive testing. Numerous case studies illustrate the application of basic principles of metallurgy and failure analysis to a wide variety of real-world situations.
Prerequisite(s): MS 201 or Graduate standing
Lecture: 3 Lab: 0 Credits: 3

MMAE 463
Structure and Properties of Materials II
Continuation of MMAE 365. Solidification structures, diffusional and diffusionless transformations. Structure-property relationships in commercial materials.
Prerequisite(s): MMAE 365 or Graduate standing
Lecture: 3 Lab: 0 Credits: 3

MMAE 465
Electrical, Magnetic, and Optical Properties of Materials
Prerequisite(s): MMAE 365 or PHYS 348 or Graduate standing
Lecture: 3 Lab: 0 Credits: 3

MMAE 470
Introduction to Polymer Science
An introduction to the basic principles that govern the synthesis, processing and properties of polymeric materials. Topics include classifications, synthesis methods, physical and chemical behavior, characterization methods, processing technologies and applications. Credit will only be granted for CHE 470, CHEM 470, MMAE 470.
Prerequisite(s): (CHEM 124 and MATH 251 and PHYS 221) or Graduate standing
Lecture: 3 Lab: 0 Credits: 3

MMAE 472
Advanced Aerospace Materials
Prerequisite(s): MMAE 372
Lecture: 3 Lab: 0 Credits: 3
MMAE 473
Corrosion: Materials Reliability and Protective Measures
This course covers the basics of corrosion science (fundamentals and mechanisms) and corrosion engineering (protection and control). The various forms of corrosion (uniform, pitting, crevice, stress corrosion cracking, etc.) are illustrated along with practical protective measures (coatings, inhibitors, electrochemical protection, materials upgrade, etc.). The course highlights the concept of alloy design to minimize corrosion, the properties of steels, stainless steels, and high-performance alloys along with case studies of corrosion failures and lessons learned. In addition, the special aspects of corrosion in batteries, fuel cells, electrolyzers, and photovoltaic cells will be discussed and illustrated with examples.
Prerequisite(s): MMAE 365 or Graduate standing
Lecture: 3 Lab: 0 Credits: 3

MMAE 476
Materials Laboratory II
Team design projects focused on the processing and/or characterization of metallic, non-metallic, and composite materials. Students will work on a capstone design problem with realistic constraints, perform experimental investigations to establish relationships between materials structures, processing routes and properties, and utilize statistical or computational methods for data analysis.
Prerequisite(s): MMAE 370 or Graduate standing
Credit: Variable

MMAE 482
Composites
Prerequisite(s): MS 201 or Graduate standing
Lecture: 3 Lab: 0 Credits: 3

MMAE 484
Materials and Process Selection
Lecture: 3 Lab: 0 Credits: 3

MMAE 485
Manufacturing Processes
Principles of material forming and removal processes and equipment. Force and power requirements, surface integrity, final properties and dimensional accuracy as influenced by material properties and process variables. Design for manufacturing. Factors influencing choice of manufacturing process.
Prerequisite(s): MMAE 202 and MS 201
Lecture: 3 Lab: 0 Credits: 3

MMAE 490
Crystallography and Crystal Defect
Geometrical crystallography - formal definitions of lattices, systems, point groups, etc. Mathematical methods of crystallographic analysis. Diffraction techniques: X-ray, electron and neutron diffraction. Crystal defects and their influence on crystal growth and crystal properties.
Lecture: 3 Lab: 0 Credits: 3

MMAE 491
Undergraduate Research
Student undertakes an independent research project under the guidance of an MMAE faculty member. Requires the approval of the MMAE Department Undergraduate Studies Committee.
Credit: Variable

MMAE 494
Undergraduate Design Project
Student undertakes an independent design project under the guidance of an MMAE faculty member. Requires the approval of the MMAE Department Undergraduate Studies Committee.
Credit: Variable

MMAE 497
Undergraduate Special Topics
Special individual design project, study, or report as defined by a faculty member of the department. Requires junior or senior standing and written consent of both academic advisor and course instructor.
Credit: Variable

MMAE 500
Data Driven Modeling
This graduate level course focuses on state of the art techniques in data driven modeling. The course introduces relevant aspects of probability theory, optimization, and the basics of machine learning and deep learning. The course surveys a variety of modeling and learning methodologies and algorithms, such as modern neural network architectures, modal decompositions, identification of linear and nonlinear dynamics, and other advanced topics in data driven modeling. The emphasis will be squarely on the application of modern data driven modeling tools to advanced engineering problems related to solid and fluid mechanics, dynamics, and controls.
Prerequisite(s): MMAE 501* and MMAE 350 with min. grade of C, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3
MMAE 501
Engineering Analysis I
Lecture: 3
Laboratory: 0
Credits: 3

MMAE 502
Engineering Analysis II
Prerequisite(s): MMAE 501 with min. grade of C
Lecture: 3
Laboratory: 0
Credits: 3

MMAE 503
Advanced Engineering Analysis
Selected topics in advanced engineering analysis, such as ordinary differential equations in the complex domain, partial differential equations, integral equations, and/or nonlinear dynamics and bifurcation theory, chosen according to student and instructor interest.
Prerequisite(s): MMAE 502 with min. grade of C
Lecture: 3
Laboratory: 0
Credits: 3

MMAE 508
Perturbation Methods
Prerequisite(s): MMAE 501 with min. grade of C
Lecture: 3
Laboratory: 0
Credits: 3

MMAE 509
Introduction to Continuum Mechanics
Prerequisite(s): MMAE 501 with min. grade of C
Lecture: 3
Laboratory: 0
Credits: 3

MMAE 510
Fundamentals of Fluid Mechanics
Prerequisite(s): MMAE 501* with min. grade of C, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 4
Laboratory: 0
Credits: 4

MMAE 511
Dynamics of Compressible Fluids
Prerequisite(s): MMAE 510 with min. grade of C
Lecture: 3
Laboratory: 0
Credits: 3

MMAE 512
Dynamics of Viscous Fluids
Prerequisite(s): MMAE 510 with min. grade of C
Lecture: 4
Laboratory: 0
Credits: 4

MMAE 513
Turbulent Flows
Prerequisite(s): MMAE 510 with min. grade of C
Lecture: 4
Laboratory: 0
Credits: 4

MMAE 514
Stability of Viscous Flows
Prerequisite(s): MMAE 510 with min. grade of C and MMAE 502 with min. grade of C
Lecture: 4
Laboratory: 0
Credits: 4
MMAE 517
Computational Fluid Dynamics
Prerequisite(s): MMAE 510 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

MMAE 518
Spectral Methods in Computational Fluid Dynamics
Application of advanced numerical methods and techniques to the solution of important classes of problems in fluid mechanics. Emphasis is in methods derived from weighted-residuals approaches, like Galerkin and Galerkin-Tau methods, spectral and pseudospectral methods, and dynamical systems modeling via projections on an arbitrary orthogonal function bases. Finite element and spectral element methods will be introduced briefly in the context of Galerkin methods. A subsection of the course will be devoted to numerical turbulence modeling, and to the problem of grid generation for complex geometries.
Prerequisite(s): MMAE 510 with min. grade of C and MMAE 501 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

MMAE 520
Advanced Thermodynamics
Macroscopic thermodynamics: first and second laws applied to equilibrium in multicomponent systems with chemical reaction and phase change, availability analysis, evaluations of thermodynamic properties of solids, liquids, and gases for single and multicomponent systems. Applications to contemporary engineering systems. Prerequisite: An undergraduate course in applied thermodynamics.
Lecture: 3 Lab: 0 Credits: 3

MMAE 522
Nuclear, Fossil-Fuel, and Sustainable Energy Systems
Lecture: 3 Lab: 0 Credits: 3

MMAE 523
Fundamentals of Power Generation
Thermodynamic, combustion, and heat transfer analyses relating to steam-turbine and gas-turbine power generation. Environmental impacts of combustion power cycles. Consideration of alternative and sustainable power generation processes such as wind and tidal, geothermal, hydroelectric, solar, fuel cells, nuclear power, and microbial. Prerequisite: An undergraduate course in applied thermodynamics.
Lecture: 3 Lab: 0 Credits: 3

MMAE 524
Fundamentals of Combustion
Lecture: 3 Lab: 0 Credits: 3

MMAE 525
Fundamentals of Heat Transfer
Lecture: 3 Lab: 0 Credits: 3

MMAE 526
Conduction and Diffusion
Prerequisite(s): MMAE 525 with min. grade of C and MMAE 502 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3
MMAE 527
Heat Transfer: Convection and Radiation
Prerequisite(s): MMAE 525 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

MMAE 529
Theory of Plasticity
Prerequisite(s): MMAE 530 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

MMAE 530
Advanced Mechanics of Solids
Prerequisite(s): MMAE 501* with min. grade of C, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 531
Theory of Elasticity
Prerequisite(s): MMAE 530 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

MMAE 532
Advanced Finite Element Methods
Continuation of MMAE 451/CAE 442. Covers the theory and practice of advanced finite element procedures. Topics include implicit and explicit time integration, stability of integration algorithms, unsteady heat conduction, treatment of plates and shells, small-strain plasticity, and treatment of geometric nonlinearity. Practical engineering problems in solid mechanics and heat transfer are solved using MATLAB and commercial finite element software. Special emphasis is placed on proper time step and convergence tolerance selection, mesh design, and results interpretation.
Prerequisite(s): CAE 442 with min. grade of C or MMAE 451 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

MMAE 533
Fatigue and Fracture Mechanisms
Lecture: 3 Lab: 0 Credits: 3

MMAE 534
Product Design and Innovation
This course covers all aspects of planning new products or services that are commercially viable and add to a company's suite of offerings. It includes such topics as user research, market analysis, need/problem identification, creative thinking, ideation, concepting, competitive benchmarking, human factors, prototyping, evaluation, and testing. The course includes creative, analytical, and technical skills in a balanced approach using such teaching methods as case studies, individual exercises, and group projects.
Lecture: 3 Lab: 0 Credits: 3

MMAE 535
Vibrations
Analysis of vibrations in solids and structures beginning with a single degree of freedom (SDOF) system. For the SDOF system, consideration of free vibrations in undamped and damped conditions, introduction to the concept of resonance frequency, and analysis of forced harmonic response. Vibrations of multi degree of freedom (MDOF) systems are considered through matrix methods. Topics include the concept of resonant frequencies of MDOF systems, vibration modeshapes, and modal damping. Forced vibrations of MDOF systems are considered through modal analysis. Further topics include the connections of vibration analysis to Laplace and Fourier transforms, the transition from vibration analysis in MDOF system to the analysis of wave propagation in continuous systems (solids), and the applications of vibration and wave analyses to Structural Health Monitoring (SHM) and Non Destructive Evaluation (NDE).
Lecture: 3 Lab: 0 Credits: 3
MMAE 536
Experimental Solid Mechanics
Review of applied elasticity. Stress, strain and stress-strain relations. Basic equations and boundary value problems in plane elasticity. Methods of strain measurement and related instrumentation. Electrical resistance strain gauges, strain gauge circuits and recording instruments. Analysis of strain gauge data. Brittle coatings. Photoelasticity; photoelastic coatings; moire methods; interferometric methods. Applications of these methods in the laboratory. Prerequisite: An undergraduate course in mechanics of solids.
Lecture: 3 Lab: 2 Credits: 4

MMAE 537
Innovation in Science and Technology I
This is the first of a two-part course designed to provide engineering and science students with an opportunity to apply their knowledge and expertise to solving a real-world technical problem. Each student will work on an individualized project to solve a problem or develop a device from concept to design and prototyping. Students will learn the basic necessary skills to analyze a topic, break the problem down to its essential components, and develop a basic understanding of the relevant engineering and physics principles involved. Project topics will include mechanical, material, thermal, fluid, solar, optical and electronic systems. This course is designed for graduate and undergraduate students who would like to enrich their academic education by conducting applied study and research without a formal thesis or research program. Students typically register for part I and II of this course in two semesters to complete their work. Undergraduate and graduate levels with interest in R&D. Contact faculty for permit to register.
Lecture: 3 Lab: 0 Credits: 3

MMAE 538
Engineering Innovation in Science and Technology II
This is the second part of a two-semester course designed to provide science and engineering students with the opportunity to investigate and develop solutions to some challenging real-world problems. Problems are selected by each student, based on her or his background and interest, from a set of topics provided by the faculty. Experimental, theoretical, numerical techniques or a combination thereof are used to advance a solution or to develop a new or improved design, methodology, device, or system. This course is designed for students who have taken MMAE 537 to continue their practical experience by a more in-depth study of their selected topic. The two-part course is designed to simulate an interdisciplinary ‘work environment’ giving students the necessary support and training to deepen their understanding of underlying engineering and physical principles to help them innovate.
Prerequisite(s): MMAE 537
Lecture: 3 Lab: 0 Credits: 3

MMAE 539
Robotic Motion Planning
Configuration space. Path planning techniques including potential field functions, roadmaps, cell decomposition, and sampling-based algorithms. Kalman filtering. Probabilistic localization techniques using Bayesian methods. Trajectory planning. Homework and project will require extensive programming in Matlab or similar environment.
Lecture: 3 Lab: 0 Credits: 3

MMAE 540
Robotics
Prerequisite(s): MMAE 501* with min. grade of C and MMAE 443 with min. grade of C, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 541
Advanced Dynamics
Prerequisite(s): MMAE 501* with min. grade of C, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 543
Modern Control Systems
Prerequisite(s): MMAE 501* with min. grade of C, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 544
Design Optimization
Optimization theory and practice with examples. Finite-dimensional unconstrained and constrained optimization, Kuhn-Tucker theory, linear and quadratic programming, penalty methods, direct methods, approximation techniques, duality. Formation and computer solution of design optimization problems in structures, manufacturing and thermofluid systems. Prerequisite: An undergraduate course in numerical methods.
Lecture: 3 Lab: 0 Credits: 3
MMAE 545
Interactive CAD/CAM graphics in mechanical engineering design and manufacturing. Mathematics of three-dimensional object and curved surface representations. Surface versus solid modeling methods. Numerical control of machine tools and factory automation. Applications using commercial CAD/CAM in design projects. MMAE 445 (with min. grade of C)/equivalent or instructor consent as prerequisite of MMAE545.
Prerequisite(s): MMAE 445 with min. grade of C or Graduate standing
Lecture: 3 Lab: 0 Credits: 3

MMAE 546
Advanced Manufacturing Engineering
Introduction to advanced manufacturing processes such as powder metallurgy, joining and assembly, grinding, water jet cutting, laser-based manufacturing, etc. Effects of variables on the quality of manufactured products. Process and parameter selection. Important physical mechanisms in manufacturing process. Prerequisite: An undergraduate course in manufacturing processes or instructor consent. Undergraduate engineering degree or concurrent enrollment in undergraduate engineering program or consent of instructor.
Lecture: 3 Lab: 0 Credits: 3

MMAE 547
Computer-Integrated Manufacturing Technologies
The use of computer systems in planning and controlling the manufacturing process including product design, production planning, production control, production processes, quality control, production equipment and plant facilities. Prerequisite: Undergraduate engineering degree or concurrent enrollment in undergraduate engineering program or consent of instructor.
Lecture: 3 Lab: 0 Credits: 3

MMAE 549
Optimal Control
The course focuses on unconstrained and constrained optimal control problems for linear and non-linear deterministic systems. It uses basic optimization and principles of optimal control. The course covers introduction to convex optimization and nonlinear systems, dynamic programming, variational calculus, approaches based on Pontryagin's minimum principle, and model predictive control.
Prerequisite(s): MMAE 543 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

MMAE 550
Optimal State Estimation
Prerequisite(s): MMAE 501* with min. grade of C, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 552
Intro to the Space Environment
Lecture: 3 Lab: 0 Credits: 3

MMAE 554
Electrical, Magnetic and Optical Properties of Materials
Lecture: 3 Lab: 0 Credits: 3

MMAE 555
Introduction to Navigation Systems
Fundamental concepts of positioning and dead reckoning. Principles of modern satellite-based navigation systems, including GPS, GLONASS, and Galileo. Differential GPS (DGPS) and augmentation systems. Carrier phase positioning and cycle ambiguity resolution algorithms. Autonomous integrity monitoring. Introduction to optimal estimation, Kalman filters, and covariance analysis. Inertial sensors and integrated navigation systems.
Prerequisite(s): MMAE 501* with min. grade of C and MMAE 443 with min. grade of C, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3

MMAE 556
Nano Manufacturing
This course covers the general methods used for micro- and nano-fabrication and assembly including photolithography techniques, physical and chemical deposition methods, masking, etching, and bulk micromachining as well as self-assembly techniques. It also covers nanotubes, nanowires, nanoparticles, and the devices that use them including both electronic and mechanical-electronic systems as well as nano-structural materials and composites. Focus is on commercially available current processes as well as emerging technologies and evolving research areas. Sensing and instrumentation as well as nano-positioning and actuation are covered briefly.
Lecture: 3 Lab: 0 Credits: 3
MMAE 557
Computer-Integrated Manufacturing Systems
Advanced topics in computer-integrated manufacturing including control systems, group technology, cellular manufacturing, flexible manufacturing systems, automated inspection, lean production, Just-In-Time production, and agile manufacturing systems. Prerequisite: Undergraduate engineering degree or concurrent enrollment in undergraduate engineering program or consent of instructor.
Lecture: 3 Lab: 0 Credits: 3

MMAE 560
Statistical Quality and Process Control
Basic theory, methods and techniques of on-line, feedback quality control systems for variable and attribute characteristics. Methods for improving the parameters of the production, diagnosis, and adjustment processes so that quality loss is minimized. Same as CHE 560. Prerequisite: Undergraduate engineering degree or concurrent enrollment in undergraduate engineering program or consent of instructor.
Lecture: 3 Lab: 0 Credits: 3

MMAE 561
Solidification and Crystal Growth
Lecture: 3 Lab: 0 Credits: 3

MMAE 562
Design of Modern Alloys
Phase rule, multicomponent equilibrium diagrams, determination of phase equilibria, parameters of alloy development, prediction of structure and properties. Prerequisite: A background in phase diagrams and thermodynamics.
Lecture: 3 Lab: 0 Credits: 3

MMAE 563
Advanced Mechanical Metallurgy
Analysis of the general state of stress and strain in solids. Analysis of elasticity and fracture, with a major emphasis on the relationship between properties and structure. Isotropic and anisotropic yield criteria. Testing and forming techniques related to creep and superplasticity. Deformation mechanism maps. Fracture mechanics topics related to testing and prediction of service performance. Static loading to onset of rapid fracture, environmentally assisted cracking fatigue, and corrosion fatigue. Prerequisite: A background in mechanical properties.
Lecture: 3 Lab: 0 Credits: 3

MMAE 564
Dislocations and Strengthening Mechanisms
Lecture: 3 Lab: 0 Credits: 3

MMAE 565
Materials Laboratory
Advanced synthesis projects studying microstructure and properties of a series of binary and ternary alloys. Gain hands-on knowledge of materials processing and advanced materials characterization through an integrated series of experiments to develop understanding of the processing-microstructure-properties relationship. Students arc melt a series of alloys, examine the cast microstructures as a function of composition using optical and electron microscopy, DTA, EDS, and XRD. The alloys are treated in different thermal and mechanical processes. The microstructural and mechanical properties modification and changes during these processes are characterized. Groups of students will be assigned different alloy systems, and each group will present their results orally to the class and the final presentation to the whole materials science and engineering group.
Credit: Variable

MMAE 566
Problems in High-Temperature Materials
Temperature-dependent mechanical properties. Creep mechanisms. Basic concepts in designing in high-temperature materials. Metallurgy of basic alloy systems. Surface stability. High-temperature oxidation. Hot corrosion. Coatings and protection. Elements of process metallurgy. Prerequisite: Background in mechanical properties, crystal defects, and thermodynamics. Prerequisite(s): MMAE 564 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3

MMAE 567
Fracture Mechanisms
Basic mechanisms of fracture and embrittlement of metals. Crack initiation and propagation by cleavage, microvoid coalescence, and fatigue mechanisms. Hydrogen embrittlement, stress corrosion cracking and liquid metal embrittlement. Temper brittleness and related topics. Prerequisite: Background in crystal structure, defects, and mechanical properties.
Lecture: 3 Lab: 0 Credits: 3

MMAE 568
Diffusion
Theory, techniques and interpretation of diffusion studies in metals. Prerequisite: Background in crystal structures, defects, and thermodynamics.
Lecture: 2 Lab: 0 Credits: 2
MMAE 569
Advanced Physical Metallurgy
Thermodynamics and kinetics of phase transformations, theory of nucleation and growth, metastability, phase diagrams. Prerequisite: Background in phase diagrams and thermodynamics.
Lecture: 3 Lab: 0 Credits: 3

MMAE 570
Computational Methods in Materials Science and Engineering
Advanced theories and computational methods used to understand and predict material properties. This course will introduce energy models from classical and first-principles approaches, density functional theory, molecular dynamics, thermodynamic modeling, Monte Carlo simulations, and data mining in materials science. The course will also include case studies of computational materials research (e.g. alloy design, energy storage, nanoscale properties). The course consists of both lectures and computer labs. Background in thermodynamics is required.
Lecture: 3 Lab: 0 Credits: 3

MMAE 572
Crystallography and Crystal Defect
Geometrical crystallography - formal definitions of lattices, systems, point groups, etc. Mathematical methods of crystallographic analysis. Diffraction techniques: X-ray, electron and neutron diffraction. Crystal defects and their influence on crystal growth and crystal properties.
Lecture: 3 Lab: 0 Credits: 3

MMAE 576
Materials and Process Selection
Context of selection; decision analysis; demand, materials and processing profiles; design criteria; selection schemes; value and performance oriented selection; case studies.
Lecture: 3 Lab: 0 Credits: 3

MMAE 578
Fiber Composites
Lecture: 3 Lab: 0 Credits: 3

MMAE 579
Advanced Materials Processing
Processing science and fundamentals in making advanced materials, particularly nanomaterials and composites. Applications of the processing science to various processing technologies including severe plastic deformation, melt infiltration, sintering, co-precipitation, sol-gel process, aerosol synthesis, plasma spraying, vapor-liquid-solid growth, chemical vapor deposition, physical vapor deposition, atomic layer deposition, and lithography.
Lecture: 3 Lab: 0 Credits: 3

MMAE 585
Engineering Optics and Laser-Based Manufacturing
Fundamentals of geometrical and physical optics as related to problems in engineering design and research; fundamentals of laser-material interactions and laser-based manufacturing processes. This is a lecture-dominated class with around three experiments organized to improve students' understanding of the lectures. The topics covered include: geometrical optics (law of reflection and refraction, matrix method, etc.); physical optics (wave equations, interference, polarization, Fresnel equations, etc.); optical properties of materials and Drude theory; laser fundamentals; laser-matter interactions and laser-induced thermal and mechanical effects, laser applications in manufacturing (such as laser hardening, machining, sintering, shock peening, and welding). Knowledge of Heat & Mass Transfer required.
Lecture: 3 Lab: 0 Credits: 3

MMAE 586
Advanced Failure Analysis
Comprehensive coverage of both the "how" and "why" of metal and ceramic failures. Intellectual tools and understanding needed to analyze failures. Analytical methods including stress analysis, fracture mechanics, fatigue analysis, creep mechanisms, corrosion science, and nondestructive testing. Numerous case studies illustrating the application of basic principles of materials science and failure analysis to a wide variety of real-world situations.
Lecture: 3 Lab: 0 Credits: 3

MMAE 587
Introduction to Digital Manufacturing
This course is about the digital revolution taking place in the world of manufacturing and how students, workers, managers, and business owners can benefit from the sweeping technological changes taking place. It is about the change from paper-based processes to digital-based processes all through the design/manufacturing/deliver enterprise and across the global supply chain. It touches on digital design, digital manufacturing engineering, digital production, digital quality assurance, and digital contracting from large companies to small. There is also a significant focus on cyber security and the new types of threats that manufacturers face in the new digital world. Other topics covered include intelligent machines, connectivity, the digital thread, big data, and the Industrial Internet of Things (IIoT).
Lecture: 3 Lab: 0 Credits: 3
MMAE 588
Additive Manufacturing
This course examines the fundamentals of a variety of additive manufacturing processes as well as design for additive manufacturing, materials available, and properties and limitations of materials and designs. It also examines the economics of additive manufacturing as compared to traditional subtractive manufacturing and other traditional techniques. Additive techniques discussed include 3D printing, selective laser sintering, stereo lithography, multi-jet modeling, laminate object manufacturing, and others. Advantages and limitations of all current additive technologies are examined as well as criteria for process selection. Processes for metals, polymers, and ceramics are covered. Other topics include software tools and connections between design and production, direct tooling, and direct manufacturing. Current research trends are discussed.
Lecture: 3 Lab: 0 Credits: 3

MMAE 589
Applications in Reliability Engineering I
This first part of a two-course sequence focuses on the primary building blocks that enable an engineer to effectively communicate and contribute as a part of a reliability engineering effort. Students develop an understanding of the long term and intermediate goals of a reliability program and acquire the necessary knowledge and tools to meet these goals. The concepts of both probabilistic and deterministic design are presented, along with the necessary supporting understanding that enables engineers to make design trade-offs that achieve a positive impact on the design process. Strengthening their ability to contribute in a cross functional environment, students gain insight that helps them understand the reliability engineering implications associated with a given design objective, and the customer’s expectations associated with the individual product or product platforms that integrate the design. These expectations are transformed into metrics against which the design can be measured. A group project focuses on selecting a system, developing a flexible reliability model, and applying assessment techniques that suggest options for improving the design of the system. Prerequisite: Undergraduate engineering degree or concurrent enrollment in undergraduate engineering program or consent of instructor.
Lecture: 3 Lab: 0 Credits: 3

MMAE 590
Applications in Reliability Engineering II
This is the second part of a two-course sequence emphasizing the importance of positively impacting reliability during the design phase and the implications of not making reliability an integrated engineering function. Much of the subject matter is designed to allow the students to understand the risks associated with a design and provide the insight to reduce these risks to an acceptable level. The student gains an understanding of the methods available to measure reliability metrics and develops an appreciation for the impact manufacturing can have on product performance if careful attention is not paid to the influencing factors early in the development process. The discipline of software reliability is introduced, as well as the influence that maintainability has on performance reliability. The course culminates in an exhaustive review of the lesson plans in a way that empowers practicing or future engineers to implement their acquired knowledge in a variety of functional environments, organizations and industries. The group project for this class is a continuation of the previous course, with an emphasis on applying the tools and techniques introduced during this second of two courses. Prerequisite: Undergraduate engineering degree or concurrent enrollment in undergraduate engineering program or consent of instructor.
Lecture: 3 Lab: 0 Credits: 3

MMAE 591
Research and Thesis M.S.
Credit: Variable

MMAE 593
MMAE Seminar
Reports on current research. Full-time graduate students in the department are expected to register and attend.
Lecture: 1 Lab: 0 Credits: 0

MMAE 594
Project for Master of Engineering Students
Design projects for the master of mechanical and aerospace engineering, master of materials engineering, and master of manufacturing engineering degrees.
Credit: Variable

MMAE 596
Semiconductors for Energy Generation
Prerequisite(s): MS 201 with min. grade of C
Lecture: 3 Lab: 0 Credits: 3
MMAE 597
Special Topics
Advanced topic in the fields of mechanics, mechanical and aerospace, metallurgical and materials, and manufacturing engineering in which there is special student and staff interest.
(Variable credit)
Credit: Variable

MMAE 600
Continuance of Residence
Lecture: 0
Lab: 0
Credits: 1

MMAE 691
Research and Thesis Ph.D.
Credit: Variable

MMAE 704
Introduction to Finite Element Analysis
This course provides a comprehensive overview of the theory and practice of the finite element method by combining lectures with selected laboratory experiences. Lectures cover the fundamentals of linear finite element analysis, with special emphasis on problems in solid mechanics and heat transfer. Topics include the direct stiffness method, the Galerkin method, isoperimetric finite elements, equation solvers, bandwidth of linear algebraic equations and other computational issues. Lab sessions provide experience in solving practical engineering problems using commercial finite element software. Special emphasis is given to mesh design and results interpretation using commercially available pre- and post-processing software.
Lecture: 2
Lab: 0
Credits: 2

MMAE 705
Computer Aided Design with Pro Engineer
This course provides an introduction to Computer-Aided Design and an associated finite element analysis technique. A series of exercises and instruction in Pro/ENGINEER will be completed. The operation of Mecanica (the associated FEM package) will also be introduced. Previous experience with CAD and FEA will definitely speed learning, but is not essential.
Lecture: 2
Lab: 0
Credits: 2

MMAE 707
High-Temperature Structural Materials
Lecture: 2
Lab: 0
Credits: 2

MMAE 709
Overview of Reliability Engineering
This course covers the role of reliability in robust product design. It dwells upon typical failure mode investigation and develops strategies to design them out of the product. Topics addressed include reliability concepts, systems reliability, modeling techniques, and system availability predications. Case studies are presented to illustrate the cost-benefits due to pro-active reliability input to systems design, manufacturing and testing.
Lecture: 2
Lab: 0
Credits: 2

MMAE 710
Dynamic and Nonlinear Finite Element Analysis
Provides a comprehensive understanding of the theory and practice of advanced finite element procedures. The course combines lectures on dynamic and nonlinear finite element analysis with selected computer labs. The lectures cover implicit and explicit time integration techniques, stability of integration algorithms, treatment of material and geometric nonlinearity, and solution techniques for nonlinear finite element equations. The computer labs train student to solve practical engineering problems in solid mechanics and heat transfer using ABQUS and Hypermesh. Special emphasis is placed on proper time step and convergence tolerance selection, mesh design, and results interpretation. A full set of course notes will be provided to class participants as well as a CD-ROM containing course notes, written exercises, computer labs, and all worked out examples.
Prerequisite(s): MMAE 704 with min. grade of C
Lecture: 2
Lab: 0
Credits: 2

MMAE 713
Engineering Economic Analysis
Introduction to the concepts of Engineering Economic Analysis, also known as micro-economics. Topics include equivalence, the time value of money, selecting between alternative, rate of return analysis, compound interest, inflation, depreciation, and estimating economic life of an asset.
Lecture: 2
Lab: 0
Credits: 2

MMAE 715
Project Management
This course will cover the basic theory and practice of project management from a practical viewpoint. Topics will include project management concepts, recourses, duration vs. effort, project planning and initiation, progress tracking methods, CPM and PERT, reporting methods, replanning, team project concepts, and managing multiple projects. Microsoft Project software will be used extensively.
Lecture: 2
Lab: 0
Credits: 2

MMAE 724
Introduction to Acoustics
This short course provides a brief introduction to the fundamentals of acoustics and the application to product noise prediction and reduction. The first part focuses on fundamentals of acoustics and noise generation. The second part of the course focuses on applied noise control.
Lecture: 2
Lab: 0
Credits: 2