Food Science and Nutrition

Food Science and Nutrition
IIT Tower
Room 18C5-2
Chicago, IL 60601
708-563-8190

iit.edu/fdsn

Chair
Britt Burton-Freeman

Manager, Academic Programs and Initiatives
Todd Diel

Faculty with Research Interests
For more information regarding faculty visit the Department of Food Science and Nutrition website.

The Department of Food Science and Nutrition (FdSN) consists of Illinois Institute of Technology faculty, in collaboration with U.S. Food and Drug Administration (FDA) scientists, and food industry experts, and provides a unique training ground for individuals seeking graduate education in food safety and technology and food process engineering.

Illinois Tech’s Bachelor of Science degree in Food Science and Nutrition prepares its graduates for careers that involve the application of science, technology, engineering and regulation to address modern-day food- and health-related problems. This unique program provides a foundation in food science and nutrition with contemporary practical training in topics pertinent to the food, manufacturing, pharma/biotech, and agricultural industries, including operations management, computation and data analytics, regulatory, and design thinking.

Our program, designed with input from the food industry and other related industries, develops professionals who understand how the food industry functions now, and will be capable of propelling that industry to where it needs to be in the future. 

Graduates from the program are prepared to step into a multitude of roles, including digitally-enabled food production; application of new and emerging food processing technologies; food safety and regulatory compliance, application of novel techniques and ingredients in food product development and formulation testing, address issues of sustainable diets, and intersections between business, health, human behavior, global food economies, and resources. 

Facilities

FdSN makes use of the facilities of Illinois Tech's Moffett campus - home of the university's Institute for Food Safety and Health (IFSH.) These facilities include 40,000 square feet of research laboratories, office and meeting space, 26,000 square feet of industrial scale pilot plant facility, 3,000 square feet of food processing plant (GMP), and 3,000 square feet of Biosafety Level-3 (BSL-3) Laboratory and Bio-containment Pilot Plant (BCPP). The research laboratory facilities at Moffett Campus include numerous laboratories for microbiology, virology, molecular biology, chemistry, biochemistry, nutrition, and engineering. A 5,000 square feet Clinical Nutrition Research Facility is also located at the university's Mies Campus. The pilot plant at IFSH houses state of the art equipment such as computer-controlled retorts, high temperature-short time plate pasteurizer, high pressure food processors for pasteurization and sterilization studies, equipment for aseptic processing of particulate foods, pulsed electric field apparatus, ozone processor, UV food processors, homogenizers, and high power ultrasound. The BSL-3 and BCPP provide an opportunity to conduct studies on control of pathogenic microorganisms using pilot-scale equipment. Further, microbiological, food engineering, chemical, and packaging laboratories support the pilot plant facilities. IFSH’s food science and technology library provides both physical and systems access to current and retrospective research and technical publications. The 25,000 square feet of laboratories and facilities of the FDA Division of Food Processing Science and Technology physically located in the same building are also available to FdSN collaborative research projects.

Course Descriptions

FDSN 100
Introduction to the Profession

In this course students will survey the professional landscape of the food industry. The course provides an introduction to the different career roles and opportunities within the food industry. The rich Chicago food industry will serve as a backdrop to learn about the current and emerging food ecosystem. Students will hear from industry guest speakers about the legacy and latest start-up enterprises that comprise various professional paths. Field trips to local food business incubators and food processing plants are planned. The course will also provide an introduction to food regulations.

Lecture: 2 Lab: 0 Credits: 2
FDSN 201
Nutrition and Wellness

Introduction to the basic principles of nutrition and the relationship of the human diet to health. Overview of the nutrition profession, the biological uses of nutrients, and tools for dietary planning and assessment in various settings. Examination of specific issues such as weight management, sports nutrition, food safety, the diet-disease relationship, and global nutrition. Analysis of special nutritional requirements and needs during the life cycle.

Lecture: 3 Lab: 0 Credits: 3
Satisfies: Natural Science (N)
FDSN 210
Introduction to Culinology

This course gives a broad overview of the new field of culinology: the blending of culinary arts and food science training. Topics include Principles of Cooking, Formula and Recipe Development, Culinary Fundamentals and Production Systems, Culinary Uses and Applications of Products, Flavor Building, and Functional Ingredients, and how these all integrate with Food Safety and Sanitation Principles.

Lecture: 2 Lab: 0 Credits: 2
FDSN 300
Nutrition Through the Life Cycle

This course analyzes the changing nutritional requirements and relative dietary and psycho-social issues which are specific to the different stages of the life cycle. Expected student outcomes include the following: (1) the student will be able to identify specific nutrient requirements for each stage of the life cycle; (2) the student will be able to relate nutrient needs to developmental levels, including biochemical and physiological structure/function of the body, and have a general understanding of dietary planning that will adequately meet nutritional needs of given levels; (3) the student will be able to describe the importance of environment, feeding skills, psychosocial situations, and other factors to total nutrition and eating habits through the life cycle (development through aging); (4) the student will be able to identify risk factors associated with major health problems over the life span and acquire appropriate knowledge for addressing through dietary and lifestyle choices; (5) the student will be able to select, utilize, and evaluate appropriate materials and methods for communication of nutrition information to a given audience; (6) the student will be able to evaluate dietary intakes and feeding programs for individuals throughout the life cycle; and (7) the student will effectively communicate knowledge through exams, writing, and/or oral projects.

Prerequisite(s): (BIOL 107 or BIOL 115) and (FST 201 or FST 401 or FPE 201 or FPE 401)
Lecture: 3 Lab: 0 Credits: 3
Satisfies: Natural Science (N)
FDSN 301
Exploring Food Science & Tech

In this course students will explore the wide array of disciplines in which engineering, biological, and physical sciences are used to study and produce food products. An overview of the relationship between food nutrition, chemistry, microbiology, safety, processing, engineering, sensory, and product development will be discussed. The food science and technology industry will be studied to understand food processing, food safety, quality and packaging of specific categories of foods. The course also provides a brief introduction to different career opportunities within the food and technology industry.

Lecture: 3 Lab: 0 Credits: 3
FDSN 304
Food Biotechnology

This course is designed for undergraduate students to learn various biotechnologies and applications used by modern food industry. These may include but limited to genetic engineering of microorganisms, polymerase chain reaction, molecular detection, DNA fingerprinting, and epidemiology of foodborne pathogen, genetically modified organisms (GMOs), food plant biotechnology, dairy and animal biotechnology, biotechnology in fermentation industry and dietary supplements, consumer perspectives and governmental regulations of GMOs, organic foods and more. Also covered in this course: fundamentals of microbial genomics and proteomics, introduction of bioinformatics tools including database search, gene prediction, PCR primer design, structural and functional prediction of proteins. Also examined are applications of high-throughput sequencing technology and data security in food safety and public health sectors.

Prerequisite(s): BIOL 210
Lecture: 3 Lab: 0 Credits: 3
FDSN 310
Food Chemistry with Lab

The course applies basic scientific principles to food systems and practical applications. Chemical/biochemical reactions of carbohydrates, lipids, proteins, and other constituents in fresh and processed foods are discussed with respect to food quality. Reaction conditions and processes that affect color, flavor, aroma, texture, nutrition, and safety of food are emphasized. Other topics include activation and control of enzymatic reactions in fruits and vegetables; consequences of water migration on food quality; gelatinization‐retrogradation in starch‐based foods (e.g., pudding, bread, and rice); initiation and control of non‐enzymatic browning (e.g.,pretzels, meat); food emulsions (e.g., salad dressings, commutated meats products), crystal structures in foods and general properties of food materials. The interaction of food components with packaging and the environment will be examined.

Prerequisite(s): CHEM 237
Lecture: 2 Lab: 1 Credits: 3
FDSN 311
Food Analysis and Properties

In this course students will learn about the physical and chemical properties of foods that can be instrumentally measured as a means to derive product and ingredient specifications. Such measurements enable the food industry to define foods on an objective basis and meet regulatory requirements for food labeling. Properties such as color, acidity, total solids, viscosity, water activity, particle size and moisture content will be demonstrated in a hands-on lab experience setting. This course will also cover the types of instrumentation used for nutritional label contents (protein, fat, sugars, salt etc.) versus that used for research purposes and trouble-shooting for product design issues.

Lecture: 2 Lab: 1 Credits: 3
FDSN 312
Food and Natural Products Toxicology

Food toxicology is concerned with assessing the injurious effects on living systems of chemicals present in foods. The chemical agents can be man-made (e.g., pesticide residues, food additives, contaminants originating with processing machinery, or packaging materials) or of natural origin (e.g., microbial, animal or plant derived). They can also be generated in the course of preparing, processing, and preserving foods (e.g., mutagens and carcinogens). This course presents the chemical and biological principles that determine toxicity and, by presenting typical examples of the toxic substances found in foods, it hopes to let students become familiar with their properties, modes of action, and methods of analysis.

Prerequisite(s): CHEM 237 and BIOL 107
Lecture: 3 Lab: 0 Credits: 3
FDSN 314
Sustainable Food Systems

This course is designed to give students an appreciation of the complex intersections and relationships among food and culture, economics, the environment, labor, policy, population health, and social justice. Students will have opportunities to work on projects that model and analyze these relationships, and consider trade-offs impacting production and consumption, global nutrition and health, scarcity in resources, and more. Students will visit urban and rural farms, introduced to alternative farming techniques and their challenges, how sustainability is measured and reported in the food and related industries.

Lecture: 3 Lab: 0 Credits: 3
FDSN 316
Cultural Foods with Lab

This course examines the regional, ethnic, cultural, religious, historical and social influences on food patterns and cuisine. Students will study cultural food and nutrition principles related to the following topics: Food as identity and food in social organization; Evolutionary and revolutionary developments in food and cuisine; Food as spectacle; Food technology in non-industrialized and industrialized food systems; Food and health: political inputs and obesity; Food branding and marketing; Food in world religions; Global hunger: root causes and proposed solutions; Hunger in America; and Food and social change.

Lecture: 2 Lab: 1 Credits: 3
FDSN 318
Culinary Entrepreneurship

This course surveys the new trends in food business entrepreneurship from a culinary perspective. Guest speakers with backgrounds in food science and culinary arts will review the steps in taking a kitchen recipe concept into the local marketplace. Topics will include formulating your business plan, preparing the product pitch for investors, choosing when to work with a shared kitchen versus a food incubator space, when and how to use consultants, building a support team and how to scale the product. Local chef and food entrepreneurs will co-instruct this course and students will visit several of Chicago’s start-up entrepreneurial centers.

Lecture: 3 Lab: 0 Credits: 3
FDSN 320
Food Law, Labels, and Health Claims

This course is designed to give students an in depth understanding of food laws and regulations that govern the food and dietary supplement industries. Students will apply their knowledge in simulated and real world experiences preparing students for rigid food safety requirements and navigating the complex landscape of food labels, including Health and related claims and communications.

Lecture: 3 Lab: 0 Credits: 3
FDSN 401
Nutrition, Metabolism, and Health

Study of chemical structures, types, and metabolism of carbohydrates, lipids, and proteins. Discussion of the biological and chemical roles of vitamins and minerals. Application and integration of metabolic knowledge with health promotion and chronic disease.

Lecture: 3 Lab: 0 Credits: 3
FDSN 402
Development, Delivery, and Dissemination

This course is an introduction to writing and presenting on scientific research with a focus on skills necessary for research at IIT's Institute for Food Safety and Health. Topics will include defining a problem, structuring a literature review, creating a research proposal, and written and oral presentation of research results.

Lecture: 3 Lab: 0 Credits: 3
FDSN 405
Food and Behavior

The course aims to develop an understanding of food and food intake behavior by examining the intersection of nutritional science with other disciplines and expertise. The course will be an analysis of the factors that impact food choice/intake. Examination of physiological regulation, physiological and psychological moderators, food marketing, technology, economics, food policy and regulations, media, food safety, and agricultural practices as well as how food intake behavior feeds back and influences these factors. Influence of sex, BMI, and age will also be considered.

Lecture: 3 Lab: 0 Credits: 3
FDSN 408
Food Product Development

Students in this class will learn how to do the following: identify the key steps in the food product development process and stage gate concepts; develop a formulation approach with ability to effectively understand how to work well with vendors, handle labeling regulations, food safety, and consumer acceptability requirements; create a product unit costing with trade-offs and contingencies for market launch; identify key performance requirements for product shelf life testing and packaging specifications; evaluate product quality and safety with traditional and state of the art assessment tools; how to conduct consumer tests, plant trials, and introduce new products and processes into the manufacturing operation and contingency planning; and develop a strategy to monitor and improve product performance.

Lecture: 3 Lab: 0 Credits: 3
FDSN 410
Food Plant Operations

The food processing line types for the major food and beverage manufacturing segments are reviewed as integrated systems. The unit operations specific to each of the dairy, meat, poultry, seafood, juice, bakery and produce industries are reviewed. Students will each draft their own virtual commercial plant layout using vendor equipment specifications with principles of mass balance of material inputs and outputs. Industry guest speakers and trips to local food plants will provide real-world exposure to current manufacturing issues. Principles of plant layout for Good Manufacturing Practices, sanitation, and material flow through the plant will be highlighted. Trends in digitalization of the food plant and plant operations using Industry 4.0 concepts will be discussed.

Lecture: 3 Lab: 0 Credits: 3
FDSN 411
Food Microbiology with Laboratory

In this course, students will build upon the basic principles of microbiology. Students will explore the intrinsic and extrinsic parameters that affect microbial survival, growth, and inactivation. Students will learn about beneficial bacteria used as probiotics and fermentative microorganisms. Students will learn about foodborne spoilage microorganisms associated with common food commodities. Major foodborne pathogenic microorganisms (their habitats, dissemination, symptoms, and potential mitigation strategies) will be discussed in depth. Methods to assess the microbiological quality and safety of foods will be investigated via hands on experimentation.

Prerequisite(s): BIOL 210
Lecture: 3 Lab: 1 Credits: 4
FDSN 412
Preservation Processing

This course will cover the fundamental aspects of food preservation, various methods used in food preservation, and engineering calculations related to preservation processing. Perishability of different categories of food products, shelf life, microbial growth and spoilage in foods; Principles of mass and energy balance, heat transfer, and fluid flow; preservation by heat (canning, blanching, pasteurization); preservation by additives (chemical preservatives, antimicrobials, bio preservatives), preservation by pH (addition of acids, fermentation), novel methods of food preservation; preservation by temperature reduction (freezing, refrigeration); thermal process engineering calculations; preservation by water activity (dehydration, drying, evaporation, the addition of salt or sugar); preservation by other conventional methods (smoking, pickling, etc.); food packaging as a preservation aid; preservation by novel food processing technologies; special considerations for the preservation of various food products; validation of preservation.

Prerequisite(s): PHYS 123
Lecture: 3 Lab: 0 Credits: 3
FDSN 413
Food Fermentation (w/lab and plant field trips)

Role and history of fermentation; the role of microorganisms in fermentation; microbial growth kinetics during food fermentation; biological pathways in fermentation; factors affecting fermentation; fermented food products; industrial-scale fermentation; operation of fermenter; the role of sterilization in fermentation; design of a fermenter; role of different types of fermentation (alkaline, alcoholic, acetic acid, high salt, savory fermentation). Students will explore processing of fermented foods via in class and hands on learning experiences.

Prerequisite(s): CHEM 237 and BIOL 210
Lecture: 2 Lab: 1 Credits: 3
FDSN 417
Management of Food Quality Control

This course centers on the modern food processing facility which requires full time quality control management. A unique QC lab mock-up is used to provide a hands-on training experience to prepare the student for management of a QC lab. Taught by faculty with in-plant experience, students will learn how to select and integrate modern ingredient and finished product test methods with operational data from the production line. Statistical Process Control (SPC) charting methods, design of sampling protocols, handling of retention samples, dealing with product recall plans, record keeping and management of consumer complaint data will be discussed.

Prerequisite(s): FDSN 311*, An asterisk (*) designates a course which may be taken concurrently.
Lecture: 3 Lab: 0 Credits: 3
FDSN 418
Introduction to Food Design

Food design is a relatively new field to the food industry but is increasingly a critical aspect of bringing a successful food product to market. Students will learn the basic tools of human centric design thinking. This will include how to gain insights from observing and listening to the consumer. Skills for understanding unmet needs and how to frame the problem will be taught through team product design challenges sourced from the local community. Teams will have the opportunity to validate their design concepts to invited industry mentors. This course is co-taught with the IIT Design Institute in the Kaplan Institute.

Lecture: 3 Lab: 0 Credits: 3
FDSN 420
US Food Safety Regulatory Systems

This course gives a broad overview of the food safety regulatory systems in the US. It will cover the roles of FDA, USDA, EPA, CDC, DoC in regulating the production and sale of food. Regulations covered include Low Acid Canned Foods, HACCP, dietary supplements, infant formula, food additives and packaging, and the six parts of the Food Safety Modernization Act (FSMA).

Lecture: 3 Lab: 0 Credits: 3
FDSN 430
FDSN Capstone

Students choose one of two options based on area of focus: FSMA or Human Nutrition. The FSMA capstone will include hands-on team-based practical experience implementing the Food Safety Modernization Act (FSMA) Preventative Controls for Human Foods. The experience will involve the drafting a food safety plan consistent with current laws and regulations. The Human Nutrition capstone will be a hands-on team-based practicum designing foods for specific claims petition, including developing validation strategy and drafting appropriate claims petition consistent with current law/regulations.

Prerequisite(s): FDSN 420 or (FDSN 405 and FDSN 401)
Lecture: 3 Lab: 0 Credits: 3
FDSN 494
Special Projects

Advanced projects in food processing and packaging, food microbiology and safety, food chemistry, and nutrition.

Credit: Variable